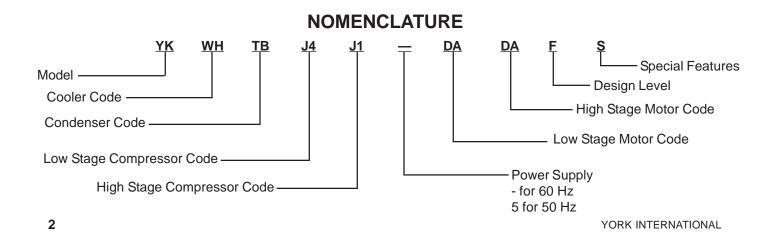


Model CYK Compound Centrifugal Liquid Chillers Design Level F



700 Through 2200 TONS (2500 Through 7730 kW) Utilizing HFC-134a

TABLE OF CONTENTS

Introduction	3
Mechanical Specifications	5
Accessories and Modifications	10
Application Data	12
Dimensions (Ft In.) – Unit	21
Dimensions (Ft In.) – Cooler - Condenser Shell Codes	22
Dimensions (Ft In.) – Nozzle Arrangements:	
Coolers – Compact Water Boxes – H Low Stage Compressor Units	24
Condensers – Compact Water Boxes – H Low Stage Compressor Units	
Coolers – Marine Water Boxes – H Low Stage Compressor Units	
Condensers – Marine Water Boxes – H Low Stage Compressor Units	
Coolers – Compact Water Boxes – J Low Stage Compressor Units	
Condensers – Compact Water Boxes – J Low Stage Compressor Units	31
Coolers – Marine Water Boxes – J Low Stage Compressor Units	32
Condensers – Marine Water Boxes – J Low Stage Compressor Units	34
Evaporators – Compact Water Boxes – JLow Stage Compressor Units	36
Condensers – Compact Water Boxes – J Low Stage Compressor Units	37
Evaporators – Marine Water Boxes – J Low Stage Compressor Units	38
Condensers – Marine Water Boxes – J Low Stage Compressor Units	40
Dimensions (mm) – Unit	42
Dimensions (mm) – Cooler - Condenser Shell Codes	43
Dimensions (Ft In.) – Nozzle Arrangements:	
Coolers – Compact Water Boxes – H Low Stage Compressor Units	45
Condensers – Compact Water Boxes – H Low Stage Compressor Units	
Coolers – Marine Water Boxes – H Low Stage Compressor Units	
Condensers – Marine Water Boxes – H Low Stage Compressor Units	
Coolers – Compact Water Boxes – J Low Stage Compressor Units	
Condensers – Compact Water Boxes – J Low Stage Compressor Units	
Coolers – Marine Water Boxes – J Low Stage Compressor Units	53
Condensers – Marine Water Boxes – J Low Stage Compressor Units	
Evaporators – Compact Water Boxes – J Low Stage Compressor Units	57
Condensers – Compact Water Boxes – J Low Stage Compressor Units	58
Evaporators – Marine Water Boxes – J Low Stage Compressor Units	59
Condensers – Marine Water Boxes – J Low Stage Compressor Units	61
Weights	63
Guide Specifications	70
SI Metric Conversion	76

YORK MAXE Compound YK Chiller is a design using two centrifugal compressors arranged in series to handle air-cooled, brine-chilling, and heat-pump applications at conditions outside the range of typical centrifugal chillers. These custom units use HFC-134a refrigerant and are available in a wide range of capacities:

- For air-cooled applications, (air-cooled radiators) 700 to 2,200 tons at 45°F LWT and up to 155°F LCWT (2,500 to 7,730 kWR at 7°C LWT and up to 68.3°C LCWT).
- For brine chilling, 700 to 1,500 tons at 20°F LBT and 95°F LCWT (2,500 to 5,271 kWR at -7°C LBT and 35°C LCWT). Brine temperatures as low as 0°F (-17.8°C) can be achieved.
- For heat pump applications, 11,000 to 32,000 MBH (3,200 to 9,400 kWR) heat rejection

STANDARD COMPONENTS

Each MAXE compound chiller employs common parts instead of a one-of-a-kind design. The compressors and heat exchangers use standard technology proven in the successful YORK packaged chiller line. Each compressor is driven by a standard, open-drive electric motor.

COMPACT FOOTPRINT

Compressors and motors are mounted above the shells to assure the smallest footprint for this type of chiller.

GREATER ADAPTABILITY

With the MaxE compound chiller, the impeller diameter, width and speed can be optimized for each stage of compression based on operating conditions.

SUPERIOR PART-LOAD PERFORMANCE

Using a compound arrangement allows the use of prerotation-vane (PRV) capacity control for the centrifugal impellers of both compressors. Pre-rotation vanes act like a throttle on the suction side of the compressor to control compressor load. With PRV control on both compressors, the result is better part-load performance than for typical multistage compressors.

HANDLES VARYING CONDENSING CONDITIONS

Since chillers most often operate at off-design conditions, off-design performance is a major factor in the energy saving equation. A compound chiller can operate with a wider range of condensing water temperatures than typical chillers. The MaxE compound unit al-

LOWER INRUSH CURRENT

Instead of starting a single, large motor, the MAXE compound chiller stagger-starts the motors in sequence. Consequently, peak inrush current is reduced to about 58% compared to starting a motor for a single large compressor.

LOWER SOUND LEVELS

Acoustically, with compound compressors sharing the workload, compressor RPMs are lower than in standard centrifugal designs — and lower RPMs help lower sound levels.

GRAPHIC CONTROL

A powerful, graphic control panel makes chiller operation easy. Startup is handled by a push of the button; there is no need for manual intervention in the staggered-start sequence of the compressors. A color graphical operator interface means operating parameters, set-points and alarms are clearly visible, ensuring proper reading and response.

ECONOMIZER OPTION

An optional economizer is available to further improve cycle efficiency for lower energy consumption.

OPEN DRIVE DESIGN

Hermetic-motor burnout can cause catastrophic damage to a chiller. The entire chiller must be cleaned, and the refrigerant replaced. YORK MAXE centrifugal chillers eliminate this risk by utilizing air-cooled motors. Refrigerant never comes in contact with the motor, preventing contamination of the rest of the chiller. Insurance companies that offer policies on large air conditioning equipment often consider air-cooled motors a significant advantage over hermetic refrigerant-cooled units.

HIGH-EFFICIENCY HEAT EXCHANGERS

MaxE chiller heat exchangers offer the latest technology in heat transfer surface design to give you maximum efficiency and compact design. Waterside and refrigerant-side design enhancements minimize both energy consumption and tube fouling.

SINGLE-STAGE COMPRESSOR DESIGN AND EFFICIENCY PROVEN IN THE MOST DEMANDING APPLICATIONS

Designed to be the most reliable chillers we've ever made, YORK MaxE centrifugal chillers incorporate single-stage compressor design. With fewer moving parts and straightforward, efficient engineering, YORK single-stage compressors have proven durability records in hospitals, chemical plants, gas processing plants, the U.S. Navy, and in other applications where minimal downtime is a crucial concern.

In thousands of installations worldwide, YORK single stage compressors are working to reduce energy costs. High strength aluminum-alloy compressor impellers feature backward-curved vanes for high efficiency. Airfoil shaped pre-rotation vanes minimize flow disruption for the most efficient part load performance. Precisely positioned and tightly fitted, they allow the compressor to unload smoothly from 100% to minimum load for excellent operation in air conditioning applications.

PRECISION CONTROL OF COMPRESSOR OIL PRESSURE

Utilizing our expertise in variable speed drive technology and applications, YORK has moved beyond the fixed head and bypass approach of oil pressure control. The old approach only assures oil pressure at the outlet of the pump rather than at the compressor, and allows no adjustment during chiller operation. The Compound MaxE chillers feature two variable speed drive oil pumps, monitoring and providing the right amount of oil flow to each compressor on a continuous basis. This design also provides sophisticated electronic monitoring and protection of the oil pump electrical supply, ensuring long life and reliable operation of the oil pump motor. Variable speed drive technology reduces oil pump power consumption, running only at the speed required, rather than at full head with a pressure regulating bypass valve.

FACTORY PACKAGING REDUCES FIELD LABOR COSTS

YORK MAXE centrifugal chillers are designed to keep installation costs low. Where installation access is not a problem, the unit can be shipped completely or partially packaged, requiring minimal piping and wiring to complete the installation.

TAKE ADVANTAGE OF COLDER COOLING TOWER WATER TEMPERATURES

YORK MaxE centrifugal chillers have been designed to take full advantage of colder cooling tower water temperatures, which are naturally available during most operating hours. Considerable energy savings are available by letting tower water temperature drop, rather than artificially holding it above 75°F (23.9°C), Especially at low load, as some chillers require.

COMPUTERIZED PERFORMANCE RATINGS

Each chiller is custom-matched to meet the individual building load and energy requirements. Standard heat exchanger tube bundle sizes and pass arrangements, are available to provide the best possible match. It is not practical to provide tabulated performance for each combination, as the energy requirements at both full and part load vary significantly with each heat exchanger and pass arrangement. Computerized ratings are available through each YORK sales office. These ratings can be tailored to specific job requirements.

GENERAL

The YORK CYK MAXE Compound Centrifugal Liquid Chillers are factory-packaged including the evaporator, condenser, compressor, motor, lubrication system, control center, and interconnecting unit piping and wiring.

The initial charge of refrigerant and oil is supplied for each chiller. Under certain conditions the unit may ship fully charged with refrigerant and oil. Actual shipping procedures will depend on a number of project-specific details.

The services of a YORK factory-trained, field service representative are incurred to supervise or perform the final leak testing, charging, the initial start-up, and concurrent operator instructions.

COMPRESSOR

Each compressor is a single-stage centrifugal type powered by an open-drive electric motor. The casing is fully accessible with vertical circular joints and fabricated of close-grain cast iron. The complete operating assembly is removable from the compressor and scroll housing.

The rotor assembly consists of a heat-treated alloy steel drive shaft and impeller shaft with a high strength, cast aluminum alloy, fully shrouded impeller. The impeller is designed for balanced thrust and is dynamically balanced and overspeed tested for smooth, vibration free operation.

The insert-type journal and thrust bearings are fabricated of aluminum alloy and are precision bored and axially grooved. The specially engineered, single helical gears with crowned teeth are designed so that more than one tooth is in contact at all times to provide even distribution of compressor load and quiet operation. Gears are integrally assembled in the compressor rotor support and are film lubricated. Each gear is individually mounted in its own journal and thrust bearings to isolate it from impeller and motor forces.

CAPACITY CONTROL

Pre-rotation vanes (PRV) in each compressor modulate chiller capacity from 100% to 15% of design for normal air conditioning applications. Operation is by an external, electric PRV actuator which automatically controls the vane position to maintain a constant leaving chilled liquid temperature. Rugged airfoil shaped cast manganese bronze vanes are precisely positioned by solid vane linkages connected to the electric actuator.

Both compressors are normally operated to satisfy the evaporator load. Should the entering condensing water

temperature drop below a preset temperature, a compressor will be taken off line. This allows the remaining compressor to continue operating more efficiently at low entering condensing water temperatures.

LUBRICATION SYSTEM

Lubrication oil is force-fed to all bearings, gears and rotating surfaces by a variable speed drive pump; which operates prior to startup, and continuously during operation and during coast-down. A gravity-fed oil reservoir is built into the top of each compressor to provide lubrication during coast-down in the event of a power failure.

Dual oil reservoirs, separate from the compressors, contain the 2 HP submersible oil pumps and 1500 watt immersion-type oil heaters for each compressor. The oil heaters are thermostatically controlled to remove refrigerant from the oil.

A water-cooled oil cooler, including flow control valves and strainer, is provided after each oil pump, with factory installed water piping terminating at the center on the condenser side of the unit. A thermostatically controlled bypass valve maintains the required oil temperature supply from each oil cooler to its compressor. Oil is filtered by externally mounted, 1/2 micron, replaceable cartridge oil filters, equipped with service valves. An automatic oil return system recovers any oil that may have migrated to the evaporator. Oil piping is completely factory installed.

MOTOR DRIVELINE

The compressor motors are open drip-proof, squirrel cage, induction type constructed to YORK design specifications. 60 hertz motors operate at 3570 rpm. 50 hertz motors operate at 2975 rpm.

The open motor is provided with a D-flange, and is factory-mounted to a cast iron adapter mounted on the compressor. This unique design allows the motor to be rigidly coupled to the compressor to provide factory alignment of motor and compressor shafts.

Motor drive shaft is directly connected to the compressor shaft with a flexible disc coupling. Coupling has all metal construction with no wearing parts to assure long life, and no lubrication requirements to provide low maintenance.

A large, steel terminal box with gasketed front access cover is provided on each motor for field-connected conduit. There are six terminals (three for medium voltage) brought through the motor casing into the terminal box. Jumpers are furnished for three-lead types of starting. Motor terminal lugs are not furnished.

Mechanical Specifications (continued)

HEAT EXCHANGERS

Shells

Evaporator and condenser shells are fabricated from rolled carbon steel plates with fusion welded seams. Carbon steel tube sheets, drilled and reamed to accommodate the tubes, are welded to the end of each shell. Intermediate tube supports are fabricated from carbon steel plates, drilled and reamed to eliminate sharp edges, and spaced no more than four feet apart. The refrigerant side of each shell is designed, tested, and stamped in accordance with ASME Boiler and Pressure Vessel Code, Section VIII – Division I, or other pressure vessel codes as appropriate.

Tubes

Heat exchanger tubes are state-of-the-art, high-efficiency, externally and internally enhanced type to provide optimum performance. Tubes in both the evaporator and condenser are 3/4" O.D. copper alloy and utilize the "skip-fin" design, providing a smooth internal and external surface at each intermediate tube support. This provides extra wall thickness (up to twice as thick) and non-work hardened copper at the support location, extending the life of the heat exchangers. Each tube is roller expanded into the tube sheets providing a leakproof seal, and is individually replaceable.

Evaporator

The evaporator is a shell and tube, flooded type heat exchanger. A distributor trough provides uniform distribution of refrigerant over the entire shell length to yield optimum heat transfer. Mesh eliminators are located above the tube bundle to prevent liquid refrigerant carryover into the compressor. A 1.5" (38mm) liquid level sight glass is conveniently located on the side of the shell to aid in determining proper refrigerant charge. The evaporator shell contains a dual refrigerant relief valve arrangement set to pressures up to 235 PSIG (1620 kPa). A 1" refrigerant charging valve is provided.

Condenser

The condenser is a shell and tube type, with discharge gas baffles to prevent direct high velocity impingement on the tubes. The baffles are also used to distribute the refrigerant gas flow properly for most efficient heat transfer. An integral sub-cooler is located at the bottom of the condenser shell providing highly effective liquid refrigerant sub-cooling to provide the highest cycle efficiency. The condenser contains dual refrigerant relief valves that can be set to pressures up to 300 PSIG (2069 kPa). In certain refrigerant capacity ranges, this pressure can be increased to 350 PSIG (2413 kPa).

WATER BOXES

The removable water boxes are fabricated of steel. The design working pressure is 150 PSIG (1034 kPa) and the boxes are tested at 225 PSIG (1551 kPa). Integral steel water baffles are located and welded within the water box to provide the required pass arrangements. Stub-out water nozzle connections with Victaulic grooves are welded to the water boxes. These nozzle connections are suitable for Victaulic couplings, welding or flanges, and are capped for shipment. Plugged 3/4" drain and vent connections are provided in each water box.

WATER FLOW SWITCHES

Thermal type water flow switches are factory mounted in the chilled and condenser water nozzles, and are factory wired to the control panel. These solid state flow sensors have a small internal heating element. They use the cooling effect of the flowing fluid to sense when an adequate flow rate has been established. The sealed sensor probe is 316 stainless steel, which is suited to very high working pressures.

REFRIGERANT FLOW CONTROL

Refrigerant flow to the evaporator is controlled by the YORK variable orifice control system. Liquid refrigerant level is continuously monitored to provide optimum sub-cooler, condenser and evaporator performance. A high quality, tight closing, "V" ball type variable orifice electronically adjusts to all Real-World operating conditions, providing the most efficient and reliable operation of refrigerant flow control.

COMPRESSOR DISCHARGE VALVES

A check valve is located in the discharge of the high stage compressor. This discharge valve ensures that there is no backspin of the compressors during shutdown as well as preventing rapid equalization of the high pressure side of the system.

ZERO LOAD HOT GAS BYPASS

Sized for operation to 0% load to prevent nuisance shutdowns due to low load conditions, and critical industrial and process applications.

LOW INLET CONDENSER WATER CAPABILITY

The MAXE CYK Compound chiller incorporates a control strategy that allows a compressor to shut down automatically when two-compressor operation is no longer required. This allows the chiller to take advantage of low-inlet condenser water temperatures to reduce energy consumption.

CONTROL CENTER

The chiller is controlled by a stand-alone PLC based control center. The chiller control center provides all the necessary controls and control logic to provide automatic start-up, automatic operation, capacity control and safety protection of the chiller.

Control Panel

The control panel includes a 10.4" color active matrix display with integral keypad for operator interface. The control panel is a factory wired, unit mounted, Nema 12, gasketed enclosure. The panel is fabricated of 10 gauge steel and includes full height front access doors. The panel enclosure is painted to match the chiller color on the outside, and gloss white on interior surfaces. All controls are arranged for easy access and internally wired to clearly marked terminal strips or pre-wired PLC interface modules for external wiring connections. Wiring is color-coded black (control), white (neutral), and green (ground), with each wire numerically identified at both ends with heat shrinkable wire markers. Wiring enclosed in shielded cables and pre-wired cables are color coded per the wiring diagram.

The screen details all operations and parameters, using a graphical representation of the chiller and its components. Graphic screens are provided for:

- a. Chiller Overview
- b. Evaporator
- c. Condenser
- d. Low stage compressor
- e. High stage compressor
- f. Motors
- g. Capacity control diagram
- h. Manual/Auto stations for all control outputs

The operator interface is programmed to provide display of all major operating parameters in both graphical and list type screen displays. PID control loop set points, and Manual/Auto functions are also accomplished by the operator interface. Alarm indicators on the graphic display screen provide annunciation, and an alarm history screen is provided which shows the most recent alarms, with the time and date of occurrence. Trip status screens are provided which show the values of all analog inputs at the time of the last five chiller safety shutdowns. The time and date of the shutdown are also shown. Separate pushbuttons are provided on the face of the control panel for Chiller Start, Stop, Reset and Emergency Stop.

Capacity Controls System

The Capacity Control philosophy of the York CYK chiller control system allows efficient, fully automated control, without need for operator intervention. This control system also monitors and displays all safety aspects of the chiller and provides alarms and a shutdown if safety limits are exceeded. If operator intervention is required, manual controls are provided on the electronic operator interface, for all electric actuators.

The capacity controls algorithm automatically seeks out the most efficient operation of the CYK chiller. The prerotation vanes are automated to obey the temperature controller to maintain chilled water production. In cases of low load, the pre-rotation vanes automatically throttle and are limited to a minimum anti-surge position, which is calculated from a head curve. To provide light duty operation, the hot gas recycle valve is seamlessly throttled open according to temperature demands. This keeps the centrifugal compressor out of surge and maintains chilled water production.

In cases of high load, which exceeds the motor kilowatt (or current) usage, the capacity controls algorithm automatically unloads the system to maintain a restriction on power consumption. In the same way, conditions of high discharge pressure or low suction pressure override the production of chilled water in the interests of keeping the chiller system online.

In cases of light load and low head, the booster compressor is dropped offline, and the unit will be run with the high stage compressor like a normal single compressor chiller.

Analog Input List:

- 1. Low Stage Motor Current (% FLA)
- 2. High Stage Motor Current (% FLA)
- 3. Sub-cooler Refrigerant Liquid Level
- 4. Low Stage Oil Reservoir Oil Level
- 5. High Stage Oil Reservoir Oil Level
- 6. Evaporator Refrigerant Pressure
- 7. Condenser Refrigerant Pressure
- 8. Low Stage Compressor Low Oil Pressure
- 9. High Stage Compressor Low Oil Pressure
- 10. Low Stage Compressor High Oil Pressure
- 11. High Stage Compressor High Oil Pressure
- 12. Chilled Water-Out Temperature.
- 13. Chilled Water-In Temperature.

Mechanical Specifications (continued)

- 14. Condenser Water In Temperature
- 15. Condenser Water Out Temperature
- 16. Evaporator Refrigerant Liquid Temp.
- 17. Low Stage Compressor Refrigerant Discharge Temperature
- 18. High Stage Compressor Refrigerant Discharge Temperature
- 19. Sub-cooled Refrigerant Liquid Temperature
- 20. Low Stage Compressor Oil Temperature
- 21. High Stage Compressor Oil Temperature
- 22. Low Stage PRV Position
- 23. High Stage PRV Position
- 24. Low Stage Compressor high stage thrust Bearing Probe Gap
- 25. High Stage Compressor thrust bearing Probe gap
- 26. Inter-cooler Pressure (inter-cooler models)

Digital Inputs:

- 1. Start-up Bypass Valve Open Limit Switch
- 2. Start-up Bypass Valve Closed Limit Switch
- 3. Chilled Water Low Flow Switch
- 4. Condenser Water Low Flow Switch
- 5. Low Stage Motor Starter Full Voltage (Run) Auxiliary Contact
- 6. High Stage Motor Starter Full Voltage (Run) Auxiliary Contact
- 7. Low Stage Motor Starter Safety Fault Lockout Relay
- 8. High Stage Motor Starter Safety Fault Lockout Relay
- 9. Condenser Refrigerant High Pressure Cutout
- 10. Low Stage Compressor Oil Heater Thermostat
- 11. HIGH STAGE Compressor Oil Heater Thermostat
- 12. LOW STAGE PRV Closed Limit Switch
- 13. HIGH STAGE PRV Closed Limit Switch
- 14. LOW STAGE Compressor V.S. Oil Pump Drive Faulted Contact
- 15. HIGH STAGE Compressor V.S. Oil Pump Drive Faulted Contact
- 16. Chiller Start
- 17. Chiller Stop
- 18. System Reset
- 19. Emergency Stop

Analog Output List

1. Hot Gas Bypass Valve

- 2. Low Stage Compressor, V.S. Oil Pump Drive Control
- 3. High Stage Compressor, V.S. Oil Pump Drive Control
- 4. Variable Orifice Valve
- 5. Inter-stage Valve (inter-cooler models)

Digital Output List

- 1. Low Stage Liquid Line Solenoid Valve
- 2. High Stage Liquid Line Solenoid Valve
- 3. High Stage Oil Return Solenoid
- 4. Low Stage Oil Return Solenoid Valve
- 5. Low Stage Compressor Oil Heater Contactor
- 6. High Stage Compressor Oil Heater Contactor
- 7. LOW STAGE Compressor Motor Start/Stop Control Relay
- 8. HIGH STAGE Compressor Motor Start/Stop Control Relay
- 9. LOW STAGE Compressor Oil Pump Start/Stop Relay
- 10. HIGH STAGE Compressor Oil Pump Start/Stop Relay
- 11. Oil Level Control Pump Start/Stop Relay
- 12. Start-up Bypass Valve Open/Close Relay
- 13. Open Low Stage PRV
- 14. Open High Stage PRV
- 15. Close Low Stage PRV
- 16. Close High Stage PRV

Security

Security access to prevent unauthorized change of setpoints, to allow local or remote control of the chiller, and to allow manual operation of the pre-rotation vanes and oil pump. Access is through ID and password recognition, which is defined by three different levels of user competence: operator, service and programming.

Memory Back-up

The operating program is stored in non-volatile memory (EPROM) to eliminate reprogramming the chiller due to AC power failure or battery discharge.

Over-Current Protection

A fused connection through a transformer on the Variable Speed Oil Pump Panel to provide individual overcurrent protected power for all controls.

Communication

The chiller network interface can be accomplished with the following native mediums with the listed protocol:

- a. Ethernet/IP over CAT-5 cable
- b. ControlNet over RG6 coaxial cable
- c. DH-485 over RS-485
- d. DF1 over RS-232c

The PLC tag database will be provided to show all analog and discrete data that can be accessed.

Remote setting of the leaving chilled water set-point can be accomplished by a remote 4-20mA signal or by the network. Remote start and stop can be accomplished across the network protocol, or thru a hard-wired contact.

CODES AND STANDARDS

- ASME Boiler and Pressure Vessel Code Section VIII Division 1.
- ARI Standard 550/590 (When applicable)
- c/U.L. Underwriters Laboratory
- ASHRAE 15 Safety Code for Mechanical Refrigeration
- ASHRAE Guideline 3 Reducing Emission of Halogenated Refrigerants in Refrigeration and Air-Conditioning Equipment and Systems
- N.E.C. National Electrical Code
- OSHA Occupational Safety and Health Act

ISOLATION MOUNTING

The unit is provided with four vibration isolation mounts consisting of 1" (25.4 mm) thick neoprene isolation pads for field mounting under the steel mounting pads located on the tube sheets.

REFRIGERANT CONTAINMENT

The standard unit has been designed as a complete and compact factory-packaged chiller. As such, it has minimum joints from which refrigerant can leak. The entire assembly has been thoroughly leak tested at the factory prior to shipment. The YORK chiller includes service

valves, conveniently located to facilitate transfer of refrigerant to a remote refrigerant storage/recycling system. Optional condenser isolation valves allow storage of the charge in the condenser.

PAINT

Exterior surfaces are protected with one coat of Caribbean blue, durable alkyd-modified, vinyl enamel, machinery paint.

SHIPMENT

Protective covering is furnished on the motor, Control Center and unit-mounted controls. Water nozzles are capped with fitted plastic enclosures. Entire unit is protected with industrial-grade, reinforced shrink-wrapped covering.

BAS REMOTE CONTROL

Alternate network mediums and protocols may be accomplished with the addition of a protocol translator gateway. These include: Modbus RTU, Modbus TCP/ IP, Profibus, DNP, Remote I/0 and ASCII. Contact the factory for more information.

FACTORY INSULATION OF EVAPORATOR

Factory-applied thermal insulation of the flexible, closedcell plastic type, 3/4" (19 mm) thick is attached with vapor-proof cement to the evaporator shell, flow chamber, tube sheets, suction connection, and (as necessary) to the auxiliary tubing. Not included is the insulation of compact water boxes and nozzles. This insulation will normally prevent condensation in environments with relative humidities up to 75% and dry bulb temperatures ranging from 50° to 90°F (10° to 32.2°C). 1-1/2" (38 mm) thick insulation is also available for relative humidities up to 90% and dry bulb temperatures ranging from 50° to 90°F (10° to 32.2°C).

WATER FLANGES

Four 150 lb. ANSI raised-face flanges for condenser and evaporator water connections, are factory-welded to water nozzles. Companion flanges, bolts, nuts and gaskets are not included.

SPRING ISOLATION MOUNTING

Spring isolation mounting is available instead of standard isolation mounting pads when desired. Four leveladjusting, spring-type vibration isolator assemblies with non-skid pads are provided for field-installation. Isolators are designed for one-inch (25 mm) deflection.

STARTER – FIELD-INSTALLED

A field-installed, electro-mechanical compressor motor starter assembly is available, selected for proper size and type for job requirements and in accordance with YORK Engineering Standard (R-1137) for Starters. The starter assembly has contactors and accessories for controlling the two compressor motors per chiller.

MARINE WATER BOXES

Marine water boxes allow service access for cleaning of the heat exchanger tubes without the need to break the water piping. Bolted-on covers are arranged for convenient access. Victaulic nozzle connections are standard; flanges are optional. Marine water boxes are available for condenser and/or evaporator.

KNOCK-DOWN SHIPMENT

The chiller can be shipped knocked down into major subassemblies (evaporator, condenser, driveline, etc.) as required to rig into tight spaces. This is particularly convenient for existing buildings where equipment room access does not allow rigging a factory-packaged chiller.

REFRIGERANT ISOLATION VALVES

Optional factory installed isolation valves in the compressor discharge line and refrigerant liquid line are available. This allows isolation and storage of the refrigerant charge in the chiller condenser during servicing, eliminating time-consuming transfers to remote storage vessels. Both valves are positive shut-off, assuring integrity of the storage system.

REFRIGERANT STORAGE/RECYCLING SYSTEM

A refrigerant storage/recycling system is a self-contained package consisting of a refrigerant compressor with oil separator, storage receiver, water-cooled condenser, filter drier and necessary valves and hoses to remove, replace and distill refrigerant. All necessary controls and safety devices are a permanent part of the system. Typically not required if unit isolation valves are provided.

HIGH VOLTAGE MOTORS

High voltage induction motors (11 kV to 13.8 kV), special motor enclosures such as TEWAC or WPII, may be substituted.

TUBE AND/OR TUBE SHEET MATERIALS AND/OR WATER BOX COATING

For condenser and/or cooler for protection against aggressive water conditions. Alternate cupro-nickel or titanium tubes can be provided in lieu of standard copper. Tube sheets may be of the clad type. A coal tar epoxy coating (International Coatings Intertuf 132 HS) may be applied to water boxes or to tubesheet and water boxes.

SACRIFICIAL ZINC ANODES

With mounting hardware for condenser and/or cooler corrosion protection.

HIGHER WATER CIRCUIT DWP

Condenser and/or cooler water circuit(s) DWP higher than the standard 150 PSIG (1034 kPa) DWP.

OUTDOOR AND/OR HAZARDOUS DUTY APPLICA-TIONS

Necessary unit, control and control center modifications for Outdoor (NEMA-3 & 4) and/or Hazardous Duty (NEMA-7 or 9) application in lieu of standard NEMA-1 construction. Suitable alternate surface preparation and protective coating systems also available.

FIELD PERFORMANCE TEST

Services of a factory engineer or independent consultant to supervise a field performance test. Various levels of instrumentation can be offered by YORK.

Application Data

The following discussion is a user's guide in the application and installation of *Millennium* chillers to ensure the reliable, trouble-free life for which this equipment was designed. While this guide is directed towards normal, water-chilling applications, the YORK sales representative can provide complete recommendations on other types of applications.

LOCATION

Millennium chillers are virtually vibration free and may generally be located at any level in a building where the construction will support the total system operating weight.

The unit site must be a floor, mounting pad or foundation which is level within 1/4" (6.4 mm) and capable of supporting the operating weight of the unit.

Sufficient clearance to permit normal service and maintenance work should be provided all around and above the unit. Additional space should be provided at one end of the unit to permit cleaning of cooler and condenser tubes as required. A doorway or other properly located opening may be used.

The chiller should be installed in an indoor location where temperatures range from 40° F to 104° F (4.4° C to 40° C).

WATER CIRCUITS

Flow Rate - For normal water chilling duty, cooler and condenser flow rates are permitted at water velocity levels in the heat exchangers tubes of between 3 ft/sec and 12 ft/sec (0.91 m/s and 3.66 m/s). Variable flow applications are possible, and initial chiller selections should be made accordingly to allow proper range of flow while maintaining the minimum velocity noted above. Variable flow in the condenser is not recommended, as it generally raises the energy consumption of the system by keeping the condenser pressure high in the chiller. Additionally, the rate of fouling in the condenser will increase at lower water velocities associated with variable flow, raising system maintenance costs. Cooling towers typically have narrow ranges of operation with respect to flow rates, and will be more effective with full design flow. Ref. Table 1 for flow limits.

Temperature Ranges – For normal water chilling duty, leaving chilled water temperatures may be selected between 38°F (3.3° C) [36°F (2.2° C) with Smart Freeze enabled] and 70°F (21.1° C) for water temperature ranges between 3°F and 30°F (1.7° C and 16.7°C).

Water Quality – The practical and economical application of liquid chillers requires that the quality of the water supply for the condenser and cooler be analyzed by a water treatment specialist. Water quality may affect the performance of any chiller through corrosion, deposition of heat-resistant scale, sedimentation or organic growth. These will degrade chiller performance and increase operating and maintenance costs. Normally, performance may be maintained by corrective water treatment and periodic cleaning of tubes. If water conditions exist which cannot be corrected by proper water treatment, it may be necessary to provide a larger allowance for fouling, and/or to specify special materials of construction.

General Piping – All chilled water and condenser water piping should be designed and installed in accordance with accepted piping practice. Chilled water and condenser water pumps should be located to discharge through the chiller to assure positive pressure and flow through the unit. Piping should include offsets to provide flexibility and should be arranged to prevent drainage of water from the cooler and condenser when the pumps are shut off. Piping should be adequately supported and braced independently of the chiller to avoid the imposition of strain on chiller components. Hangers must allow for alignment of the pipe. Isolators in the piping and in the hangers are highly desirable in achieving sound and vibration control.

Convenience Considerations – To facilitate the performance of routine maintenance work, some or all of the following steps may be taken by the purchaser. Cooler and condenser water boxes are equipped with plugged vent and drain connections. If desired, vent and drain valves may be installed with or without piping to an open drain. Pressure gauges with stop cocks and stop valves may be installed in the inlets and outlets of the condenser and chilled water line as close as possible to the chiller. An overhead monorail or beam may be used to facilitate servicing.

Connections – The standard chiller is designed for 150 PSIG (1034 kPA) design working pressure in both the chilled water and condenser water circuits. The connections (water nozzles) to these circuits are furnished with grooves for Victaulic couplings. Piping should be arranged for ease of disassembly at the unit for tube cleaning. All water piping should be thoroughly cleaned of all dirt and debris before final connections are made to the chiller.

Condenser Water – The chiller is engineered for maximum efficiency at both design and part load operation by taking advantage of the colder cooling tower water temperatures which naturally occur during the winter months. Appreciable power savings are realized from these reduced heads.

The minimum entering condenser water temperature for other full and part load conditions is provided by the following equation:

			C00	LER			CONDENSER						
MODEL	1 P	ASS	2 PA	SS	3 P.	ASS	1 P/	ASS	2 P	ASS	3 P/	ASS	
	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
DB	-	_	_	-	_	_	1073	4292	536	2146	-	_	
DC	_	-	_	-	_	_	-	-	-	-	400	1439	
EB	-	-	_	-	_	-	1466	5864	733	2467	-	_	
EC	_	-	_	-	_	_	-	-	_	-	596	1794	
FB	1352	5410	676	2265	451	1503	1960	7839	980	3314	-	_	
FC	1532	6127	766	2531	511	1682	-	-	-	-	756	2305	
GB	1735	6938	867	2932	578	1947	2551	10205	1276	4277	-	_	
GC	1940	7762	970	3256	647	2166	-	-	_	-	1048	3093	
GD	2220	8879	1110	3682	740	2460	-	-	_	-	-	_	
GF	1467	5868	734	2485	489	1647	-	-	_	-	-	-	
GH	1714	6856	857	2875	571	1908		-	_		-	_	
HB	2455	9820	1227	4015	818	2690	3469	13874	1734	5823	-	_	
НС	2808	11231	1404	4503	936	3033	-	-	_	-	1223	4072	
HF	2008	8032	1004	3336	669	2224	-	-	_	-	-	-	
HH	2346	9384	1173	3863	782	2590	-	_	_	-	-	-	
JB	-	_	-	-	-	_	4307	17227	2153	7059	-	_	
JC	_	-	_	-	_	_	-	_	_	-	1549	5151	
JF	2743	10972	1372	4552	914	3069	-	-	_	-	-	_	
JG	2978	11913	1489	4885	993	3305	-	-	_	-	-	_	
JH	3210	12842	1605	5198	1070	3529	-	-	_	-	-	_	
ТВ	-	-	_	-	_	-	4307	17227	2153	6626	-	_	
тс	_	_	_	-	_	_	-	-	_	-	1549	4826	
TF	2743	10972	1372	4278	914	2880	-	-	_	-	-	_	
TG	2978	11913	1489	4591	993	3101	-	-	_	-	-	-	
TH	3210	12842	1605	4896	1070	3318	-	-	_	-	-	_	
VB	-	-	_	-	_	-	5471	21885	2736	8417	-	_	
VC	_	_	_	-	_	_	-	-	_	-	1900	5806	
VF	3513	14053	1757	5480	1171	3634	-	-	_	_	-	_	
VH	3843	15370	1921	5947	1281	3947	-	-	_	-	-	_	
WF	4389	17558	2195	6851	1463	4524	-		_	-	-	-	
WH	5139	20556	2570	7886	1713	5214	_		_			_	
ХА	_	_	_	_	_	_	5600	22378	2800	8620	1867	5865	
ХВ	-	-	_	-	_	_	6072	24264	3036	9250	2024	6322	
хс	-	-	_	-	_	_	-	_	-	-	2204	6725	
XD	_	_	_	_	_	_	6758	27000	3379	10131	_	_	
XF	4384	17516	2192	6424	1462	4244	-	_	_	-	-	_	
хн	5115	20430	2558	7400	1706	4895	-	_	_	_	_	_	

TABLE 1 -	· WATER	FLOW	RATE	LIMITS	(GPM)
-----------	---------	------	------	--------	-------

Min. ECWT = LCHWT - C RANGE + $17 \rightarrow {}^{\circ}F$ Min. ECWT = LCHWT - C RANGE + $9.4 \rightarrow {}^{\circ}C$ where:

ECWT = entering condensing water temperature LCHWT = leaving chilled water temperature C RANGE = condensing water temperature range at the given load condition. At initial startup, entering condensing water temperature may be as much as 25°F (13.9°C) colder than the standby chilled water temperature as long as it is above the minimum ECWT allowed.

Application Data (continued)

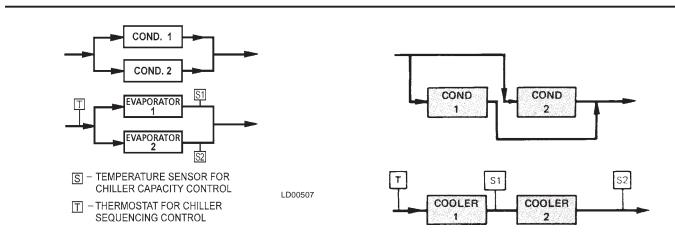
TABLE 1A - WATER FLOW RATE LIMITS (L/S)

			C00	LER			CONDENSER							
MODEL	1 P	ASS	2 PA	SS	3 P	ASS	1 P/	ASS	2 P/	ASS	3 PASS			
	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX		
DB	-	-	_	_	_	-	68	271	34	135	-	_		
DC	_	-	_	_	_	_	-	_	_	_	25	91		
EB	-	-	-	-	-	-	93	370	46	155	-	-		
EC	_	-	_	_	_	-	_	-	_	_	38	113		
FB	85	341	43	142	28	94	124	495	62	209	-	-		
FC	97	387	48	193	32	129	-	-	_	_	48	145		
GB	109	438	55	185	36	122	161	644	80	270	-	-		
GC	122	490	61	205	41	136	-	-	-	-	66	195		
GD	140	560	70	232	47	155	-	-	-	-	-	-		
GF	93	370	46	156	31	104	-	-	-	-	-	-		
GH	108	433	54	181	36	120		_		_		_		
HB	155	620	77	253	52	169	219	875	109	367	-	-		
HC	177	709	89	354	59	236	-	-	-	-	86	257		
HF	127	507	63	210	42	140	-	-	-	-	-	-		
HH	148	592	74	243	49	163	_	-	_	_	-			
JB	-	-	-	-	-	-	272	1087	136	445	-	-		
JC	_	_	_	_	_	_		_		_	109	325		
JF	173	692	87	287	58	193	-	-	-	-	-	-		
JG	188	752	94	308	63	208	-	-	-	-	-	-		
JH	203	810	101	328	68	222		-	_	_		_		
ТВ	-	-	-	-	-	-	272	1087	136	418	-	-		
ТС		-	_	_	_			_		_	109	304		
TF	173	692	87	270	58	181	-	-	-	-	-	-		
TG	188	752	94	289	63	195	-	-	-	-	-	-		
TH	203	810	101	309	68	209		-	_	_	_	_		
VB	-	-	-	-	-	-	345	1381	173	531	-	-		
VC	-	-	-	-	_	-	-	-	-	-	133	366		
VF	222	887	111	345	74	229	-	-	-	-	-	-		
VH	242	970	121	375	81	249	-	-	-	-	-	-		
WF	277	1108	138	432	92	285	-	-	-	-	-	-		
WH	324	1297	162	497	108	329	-	_				_		
XA	-	-	-	-	-	-	353	1412	177	544	118	370		
XB	-	-	-	-	-	-	383	1531	192	584	128	399		
XC	-	-	-	-	-	-	-	-	-	-	139	424		
XD	_	-	_	_	_	-	426	1703	213	639		_		
XF	277	1105	138	405	92	268	-	-	-	-	-	-		
XH	323	1289	162	467	108	309	-	-	-	-	-	-		

MULTIPLE UNITS

Selection – Many applications require multiple units to meet the total capacity requirements as well as to provide flexibility and some degree of protection against equipment shutdown. There are several common unit arrangements for this type of application. The *Millennium* chiller has been designed to be readily adapted to the requirements of these various arrangements.

Parallel Arrangement (Refer to Fig. 1) – Chillers may be applied in multiples with chilled and condenser water circuits connected in parallel between the units. Fig. 1 represents a parallel arrangement with two chillers. Parallel chiller arrangements may consist of equally or unequally sized units. When multiple units are in operation, they will load and unload at equal percentages of design full load for the chiller.


Depending on the number of units and operating characteristics of the units, loading and unloading schemes should be designed to optimize the overall efficiency of the chiller plant. It is recommended to use an evaporator by-pass piping arrangement to bypass fluid around evaporator of any unit which has cycled off at reduced load conditions. It is also recommended to alternate the chiller cycling order to equalize chiller starts and run hours.

Series Arrangement (Refer to Fig. 2) – Chillers may be applied in pairs with chilled water circuits connected in series and condenser water circuits connected in parallel. All of the chilled water flows through both coolers with each unit handling approximately one-half of the total load. When the load decreases to a customer selected load value, one of the units will be shut down by a sequence control. Since all water is flowing through the operating unit, that unit will cool the water to the desired temperature.

REFRIGERANT RELIEF PIPING

Each chiller is equipped with dual pressure relief valves on the condenser and two dual relief valves on the cooler, or two single relief valves on the cooler if the optional refrigerant isolation valves are ordered. The dual relief valves on the condenser are redundant and allow changing of either valve while the unit is fully charged. The purpose of the relief valves is to quickly relieve excess pressure of the refrigerant charge to the atmosphere, as a safety precaution in the event of an emergency such as fire. They are set to relieve at an internal pressure as noted on the pressure vessel data plate, and are provided in accordance with ASHRAE 15 safety code and ASME or applicable pressure vessel code.

Sized to the requirements of applicable codes, a vent line must run from the relief device to the outside of the building. This refrigerant relief piping must include a cleanable, vertical-leg dirt trap to catch vent-stack condensation. Vent piping must be arranged to avoid imposing a strain on the relief connection and should include one flexible connection.

- **S** Temperature Sensor for Chiller Capacity Control
- T Thermostat for Chiller Capacity Control
- FIG. 1 PARALLEL COOLERS PARALLEL CONDENSERS

LD01292

SOUND AND VIBRATION CONSIDERATIONS

A *Millennium* chiller is not a source of objectionable sound and vibration in normal air conditioning applications. Neoprene isolation mounts are furnished as standard with each unit. Optional level-adjusting spring isolator assemblies designed for 1" (25 mm) static deflection are available from YORK.

Millennium chiller sound pressure level ratings will be furnished on request.

Control of sound and vibration transmission must be taken into account in the equipment room construction as well as in the selection and installation of the equipment.

THERMAL INSULATION

No appreciable operating economy can be achieved by thermally insulating the chiller. However, the chiller's cold surfaces should be insulated with a vapor barrier insulation sufficient to prevent condensation. A chiller can be factory insulated with 3/4" (19 mm) or 1-1/2" (38 mm) thick insulation, as an option. This insulation will normally prevent condensation in environments with dry bulb temperatures of 50°F to 90°F (10°C to 32°C) and relative humidities up to 75% [3/4" (19 mm) thickness] or 90% [1-1/2" (38 mm) thickness]. The insulation is painted and the surface is flexible and reasonably resistant to wear. It is intended for a chiller installed indoors and, therefore, no protective covering of the insulation is usually required. If insulation is applied to the water boxes at the jobsite, it must be removable to permit access to the tubes for routine maintenance.

VENTILATION

The ASHRAE Standard 15 Safety Code for Mechanical Refrigeration requires that all machinery rooms be vented to the outdoors utilizing mechanical ventilation by one or more power-driven fans. This standard, plus National Fire Protection Association Standard 90A, state, local and any other related codes should be reviewed for specific requirements. Since the *Millennium* chiller motor is air-cooled, ventilation should allow for the removal of heat from the motor.

In addition, the ASHRAE Standard 15 requires a refrigerant vapor detector to be employed for all refrigerants. It is to be located in an area where refrigerant from a leak would be likely to concentrate. An alarm is to be activated and the mechanical ventilation started at a value no greater than the TLV (Threshold Limit Value) of the refrigerant.

ELECTRICAL CONSIDERATIONS

Motor Voltage – Low voltage motors (200 to 600 volts) are furnished with six leads. Medium voltage (2300 to 4160 volts) motors have three leads. Motor circuit conductor size must be in accordance with the National Electrical Code (NEC), or other applicable codes, for the motor full load amperes (FLA). Flexible conduit should be used for the last several feet to the chiller in order to provide vibration isolation. Table 2 lists the allowable variation in voltage supplied to the chiller motor. The unit name plate is stamped with the specific motor voltage, and frequency for the appropriate motor.

Starters – A separate starter is not required if the chiller is equipped with a Variable Speed Drive (VSD). The *Millennium* chillers are also available with a factory-mounted and wired YORK Solid State Starter for voltages up to 600 volts and up to 900 HP (671 kW). Other types of remote mounted starters are available. These electro-mechanical starters must be furnished in accordance with YORK Standard Specifications (R-1051). This will ensure that starter components, controls, circuits, and terminal markings will be suitable for required overall system performance.

Controls – A 115 volt, single phase, 60 or 50 Hertz 2 KVA power supply must be furnished to the chiller from a

OPERATING VOLTAGE RATED NAMEPLATE FREQ VOLTAGE VOLTAGE MIN. MAX. 200 200/208 180 220 230 220/240 208 254 380 380 342 415 416 416 375 457 60 HZ 460 440/460/480 414 508 575 575/600 520 635 2300 2300 2,070 2,530 3300 2,970 3300 3,630 4000 4000/4160 3,600 4,576 346 346 311 381 380 380/400 342 423 50 HZ 374 440 415 415 3300 3300 2,970 3,630

TABLE 2 – MOTOR VOLTAGE VARIATIONS

separate, fused disconnect or from a control transformer included as an option with electro-mechanical starters. No field control wiring is required when the YORK Variable Speed Drive or Solid State Starter is supplied.

Oil Pump Power Supply – A separate 3-phase power supply with a fused disconnect for the factory mounted oil pump variable speed drive is required. Power can also be supplied through an electro-mechanical starter.

Copper Conductors – *Only copper conductors should be connected to compressor motors and starters.* Aluminum conductors have proven to be unsatisfactory when connected to copper lugs. Aluminum oxide and the difference in thermal conductivity between copper and aluminum cannot guarantee the required tight connection over a long period of time.

Power Factor Correction Capacitors – Capacitors can be applied to a chiller for the purpose of power factor correction. For remote-mounted electro-mechanical starters, the capacitors should be located on the load-side of the starter. For YORK Solid State Starters the capacitors must be located on the line-side of the starter. The capacitors must be sized and installed to meet the National Electrical Code and be verified by YORK.

Ampacity on Load Side of Starter – Electrical power wire size to the chiller is based on the minimum unit ampacity. For remote starters, the National Electrical Code defines the calculation of ampacity, as summarized below. More specific information on actual amperage ratings will be supplied with the submittal drawings.

• Six-lead type of starting (Star-Delta)

Minimum circuit ampacity per conductor (1 of 6):

Ampacity = .721 x compressor motor amps.

Three-lead type of starting

(Across-the-Line, Autotransformer and Primary Reactor)

Minimum circuit ampacity per conductor (1 of 3):

Ampacity = 1.25 x compressor motor amps.

Ampacity on Line-Side of Starter – The only additional load on the circuit for the chiller would be the control transformer and oil pump motor unless they are supplied by a separate source.

Minimum Circuit Ampacity = 125% of compressor motor amps + FLA of all other loads on the circuit.

Branch Circuit Overcurrent Protection – The branch circuit overcurrent protection device(s) should be a time-delay type, with a minimum rating equal to the next standard fuse/breaker rating above the calculated value. It is calculated taking into account the compressor motor amps and may also include control transformer and oil pump motor. Refer to submittal drawings for the specific calculations for each application.

MOTOR ELECTRICAL DATA

The smallest motor available which equals or exceeds the Input power (KW) from the chiller rating program is selected from Tables 3 and 4. The full load amperes (FLA) listed in the tables are maximum values and correspond to the maximum motor KW listed. When the input power (kW) is less than maximum motor KW, the FLA should be reduced per the following equation:

$$FLA = \frac{Motor kW}{Max. Motor kW} \times Max. Motor FLA$$

The benefit from the FLA correction is the possible use of smaller power wiring and/or starter size.

The locked rotor amperes (LRA) are read directly from Tables 3 and 4 for specific Motor Code and voltage. This is because the LRA is dependent only on motor size and voltage and is independent of input power (KW).

Inrush amperes (IRA) depend on LRA and the type of starter applied. The inrush can be calculated using a percentage of LRA shown in Table 5.

_ __ -

- -- -- -

- __ __ -

_ _ _ _

- -- -- -

_ __ __ _

Application Data (continued)

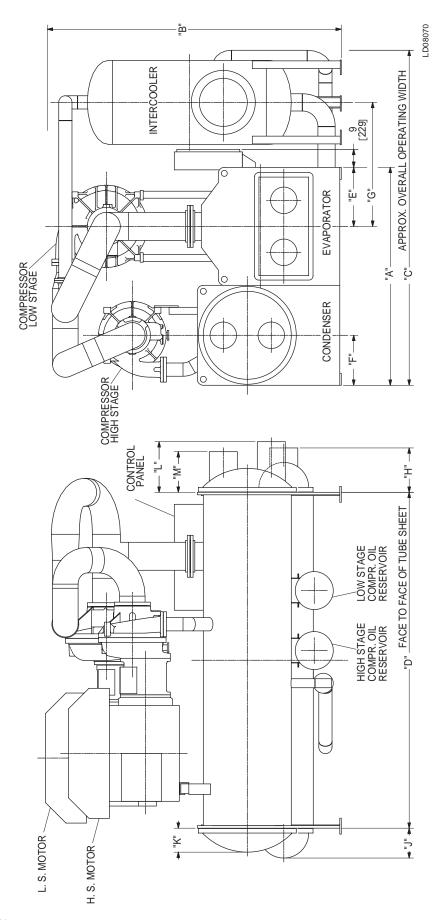
TABLE 3 – 60 HZ ELECTRICAL DATA

		- 0011														
	TOR DE	СН	CJ	СК	CL		СМ	CN	СР	CR	CS		т	CU	CV	CW
KW (N	MAX)	161	190	214	240) 2	257	276	302	333	368	39	95	435	478	514
SHAF	THP	201	237	270	302	2 ;	327	351	385	424	468	50	03	554	608	655
FL.EF	F%	93	93	94	94	1	95	95	95	95	95	9	95	95	95	95
VOL	гs							AMF	PERES (I	MAX.)						
	FLA	527	618	707	78	7	921	1,014	1,085	1,208		_	_	_	_	_
200	LRA	3,111	3,810		4,90		470	5,780	7,350	7,794	_	-	_	_	_	_
	FLA	507	594	680	75		799	886	975	1,043	1,16	2 -	_	_	_	_
208	LRA	3,235	3,962	4,732	5,090	5 5	689	6,011	6,011	7,644	8,10	6 -	_	_	—	
230	FLA	464	540	610	68		749	804	882	944	1,05		130	—	—	—
230	LRA	2,865	3,460		4,260		755	5,162	5,780	5,780	6,90		400	_	—	
240	FLA	445	518	585	65		718	771	845	905	1,00		083	—	—	—
240	LRA	3,120	3,610		4,44		962	5,386	6,031	6,031	7,20		722			
380	FLA	285	336	378	42		453	487	534	571	636		84	756	817	879
	LRA	1,730	2,153		2,57		955	3,254	3,637	3,810	4,17			4,671	5,326	5,780
416	FLA	260	307	346	38		412	445	488	522	581		25	691	747	810
		1,638	1,967		2,35		700	2,976	3,536	3,637	3,81			4,270	4,869	5,640
440	FLA LRA	238 1,320	281	319 1,865	358 2,03		392 485	397 2,485	461 2,976	493 2,976	549 3,30		91 644	646 3,644	706 4,209	579 4,783
	FLA	228	269	305	342		405 375	380	441	472	525		65	618	4,209	726
460	LRA	1,380	1,730	1,950	2,13		598	2,598	3,111	3,111	3,45			3,810	4,400	5,000
	FLA	219	258	292	32		359	364	423	452	503		41	592	647	696
480	LRA	1,440	1,805		2,22		,711	2,711	3,246	3,246	3,60			3,976	4,591	5,217
	FLA	185	216	250	24		300	318	353	377	420		52	500	540	581
575	LRA	1,100	1,384		1,70		900	2,066	2,078	2,413	2,76			3,089	3,550	4,039
	FLA	177	207	240	26		288	305	338	361	403		33	479	518	557
600	LRA	1,148	1,444		1,774		983	2,156	2,168	2,518	2,88			3,223	3,704	4,215
2200	FLA	46	55	63	7)	74	80	87	95	106	6 1	13	124	135	146
2300	LRA	298	340	397	43	5	480	520	530	590	669	9 7	19	791	867	935
3300	FLA	33	39	44	49		52	55	61	67	73		'9	86	94	102
5500	LRA	210	240	280	310		310	343	382	415	466		01	551	576	652
4000	FLA	27	32	36	4		43	46	50	55	60		65	71	78	84
	LRA	166	195	230	24		270	283	315	340	384		13	455	499	538
4160	FLA	26	30	34	3		41	44	48	52	58		3	68	75	81
	LRA	173	203	239	25		270	294	328	328	399	9 4	30	473	519	560
TABL	.E 4 -	- 50 H	Z ELEC	CTRIC/	AL DAT	A ¹										
MO	TOR					- 01	501	501/	501	5014	501	500	500	500	500	500
CO	DE	5CE	5CF 5	5CG	5CH	5CI	5CJ	5CK	5CL	5CM	5CN	5CO	5CP	500	5CR	5CS
KW (I	παχ)	160	180	201	215	231	254	280	309	332	366	402	432	455	481	518
SHAF					272	292	321	353	390	419	462	507	546	575		658
FLEF						94.2	94.2		94.2	94.2	94.2	94.2	94.2			94.7
FLI		.86		.86	.86	.86	.86	.87	.87	.87	.87	.87	.87	.87		.88
-		.00	.00	.00	.00	.00	.00	.07				.07	.07	.07	.07	.00
VOLT			0.40	000	447	10	7 4	04 500		RES (M	1	570	040	0.00	000	000
346	FLA	302		380	417	43		81 528			692	578	816		909	982
-			2,208) 3,706				4,944	· ·		5,780
380	FLA	275			379	39		38 48			630	690	743		841	895
	LRA FLA	1,640 261		2,144 329	2,464 360	2,59 37		06 3,050 16 457			3,810 599	4,400	4,500 706		5,600 799	5,491 850
400		1,726			2,594	2,72					4,011		4,737	5,149	5,895	5,780
	FLA	252		317	347	36		01 44		526	577	632	680		764	819
415	LRA	1,490		2,031		2,36					3,478		4,117		5,130	5,108
	FLA	32			44	4		50 56			73	80	87		96	103
3300	LRA	209			274	29		18 317			455	499	516		614	644

NOTE: 1. Chiller performance for 50 Hertz applications is outside the scope of the ARI Certification Program.

																			MO	TOR
СХ	CY	CZ	CA	CE	3	DA	•	DB	D	C	DI	D		DE	D	-	DH	DJ		DE
542	578	617	660	70		78		859		37		015		,093	1,1		1,359	1,554		MAX.)
690	740	790	845	90		1,00		100	1,2			300		,400	1,5		1,750	2,000		FT HP
95	95.5	95.5	95.5	95.	5	95.	5 9	95.5	9:	5.5	9	5.5		95.5	95	0.5	96	96	FLE	FF%
						A	NPERE	ES (M	AX.)										vo	LTS
—	_	_	-					_	-	_	-	_		_	_	-	—	—	FLA	200
			-		•		•		-	_	-	_		_		-			LRA FLA	
_					-			_				_		_	_	-	_			208
	—	—	- 1					_	-	_	-	_		—	_	-	—	—	FLA	230
		—	<u> </u>					_		_		_		—	_				LRA	230
_								_		_		_		_	_		_		FLA LRA	240
942	997	1065	1,126	1,20	00	1,36	64 1	,500	1,6	636	- 1	_		_	_	-	_		FLA	
6,782		6,644	7,106	7,5		7,79		,491		431	-	_		—	_	-	—		LRA	380
860	911	973	1,029	1,09		1,24		,370		495		_		-	_		—	-	FLA	416
5,780 813	5,694 861	6,069 920	6,489 973	6,86		7,12		,755 ,295		608 413	-	_		_					LRA FLA	
5,357	4,783	5,249	5,529	5,52		6,16		,709		455		_		_	_	-		_		440
778	824	880	931	99		1,12		,239		352	-	_		—		-	—	—	FLA	460
5,600		5,488	5,780	5,78		6,44		,014		794		_		—	_	-	—		LRA	400
746 5,843	790 5,217	843 5,727	892 6,031	95 6,03		1,08 6,72		,187 ,319		296 133		_		_	_		_		FLA LRA	480
622	659	704	744	79		90		. <u>913</u> 991		081	-	_		_	_	-	_		FLA	
4,440	4,300	4,200	4,694	4,96	53	5,14	48 5	,610	6,2	232	-	_		—		-	_		LRA	575
596	632	675	713	76		86		950		036	-	-		—		-	—	—	FLA	600
<u>4,633</u> 154	4,484	4,383	4,898	5,17		5,37		,854 248		503 67	-	- 90		— 312	33	-	389	438	LRA FLA	
960	1,008	1,100	1,172	1,23		1,23		,592		592		592		,031	2,03		2,390	2,879		2,300
108	115	123	130	13	8	15	7	173	1	86	2	02		217	23	3	271	306	FLA	3,300
682	719	744	744	85		86		,110		110		110		,416	1,4		1,661	2,011	LRA	3,300
89 540	95 554	101 631	107 674	114 713		13 71		143 923		54 23		66 23		179 ,177	19 1,1		224 1,386	252 1,669	FLA	4,000
85	91	97	103	110		12		137		49		60		172	18		215	242	FLA	+
562	576	656	701	74		74		960		60		60		,224	1,2		1,441	1,736	LRA	4,160
																			-	
5CT	5CU	5CV	5CW	5CX	5	DA	5DB	50	oc	5D	D	5DE	:	5DF	5	DG	5DH	50J		TOR DE
554	591	630	669	709	7	85	863	9	42	1,0	15	1,09	3	1,17	1 1.	288	1,360	1,554	KW(I	MAX.)
704	750	800	850	900		000	1,100		200	1,3		1,40		1,50			1,750	2,000	-	FT HP
94.7	94.7	94.7	94.7	94.7		95	95		5		5.5	95.5		95.5		5.5	96	96		FF%
.88	.89	.89	.89	.89		88	.87	3.	38	.8	8	.88		.88	-	88	.89	.89		PF
			1				<u>IPERE</u>		AX.)										VOL.	TS
1,051	1,107	1,181	1,255	1,32		1,48		,656	-	-	—		—	-	-	—	-	-	FLA	346
<u>6,615</u> 957	6,931 1,008	7,356	7,794	8,3 ²		8,58 1,38		<u>,346</u> ,508		_	_		_		_	_			LRA FLA	
5,491	6,313	6,694	7,113			7,79		,511		_	_		_		_	_		_	LRA	380
909	958	1,021	1,086	1,1		1,28		,433	-	_	_			-	-	—	_	—	FLA	400
<u>5,780</u> 876	6,645 923	7,046 985	7,487	7,79		<u>8,2</u> 1,2		,959 291		_	_		_		-	_		—	LRA FLA	
5,512	923 5,780	6,131	1,046 6,513	6,9		7,1		,381 ,794		_			_			_				415
110	116	124	132		39		56	174		87	202	2 2	217	23	33	256	267	306	FLA	3,300
693	725	744	819	8	75	8	71 1	,135	1,1	135	1,13	35 1	,41	5 1,4	115	1,41	5 1,667	7 2,011	LRA	3,300

TYPE STARTER	SOLID STATE STARTER	STAR DELTA	AU'	TOTRANSFORM	ER	ACROSS THE LINE	PRIMARY REACTOR		
VOLTAGE	LOW	LOW	LOW	LOW/HIGH	LOW/HIGH	LOW/HIGH	HIGH	HIGH	
60 HZ	460, 575	200-600	200-600	200-4160	200-4160	200-4160	2300-4160	2300-4160	
50 HZ	380-415	346-415	346-415	346-3300	346-3300	346-3300	2300-3300	2300-3300	
TRANSITION		CLOSED	CLOSED	CLOSED	CLOSED	_	CLOSED	CLOSED	
% TAP	—	_	57.7	65	80	_	65	80	
INRUSH	45	33	33	42.3	64	100	65	80	
AS A % OF LRA									


TABLE 5–MOTOR STARTERS

NOTE: Inrush less than 100% of full load amps (FLA).

TABLE 6 - AVAILABLE COMPRESSOR/SHELL/MOTOR COMBINATIONS

COMPRESSOR	EVAPORATOR	CONDENSER	MOTOR	MOTOR	
CODES	CODES	CODES		60 HZ	50 HZ
HG, H0 H7, H0	FB, FC, GB, GC GD, HB, HC	DB, DC, EF EC, FB, FC	30	(H0) CN–CB (H6, H7) CN–CZ	5CK –5CX 5CK–5CU
J1, H1 (H5) J2, H2 (H6) J2, H3 (H8)	GF, GH, HF, HH JF, JG, JH	FB, FC, GB GC, JB, JC	30	(H1-H3) CN–DD (H5, 6, 8) CN–CZ (J1-J2) CS–DD	5CK–5DD 5CK–5CU 5C0–5DD
J3, H3 (H7) J3, J1/U1	HF, HH, JF, JG, JH TF, TG, TH, VF, VH, WF, WH	FB, FC, GB, GC HB, HC TB, TC, VB, VC	36	(H3) EN-DD (H7) CN-CZ (J1, U1) CS-DD (J3) CW-DJ	5CK–5DD 5CK–5CU 5CO–5DD 5CR–50J
J4, J1/U1 J4, J2/U2	JF, JG,JH TF, TG, TH, VF, VH, WF, WH	JB, JC TB, TC, VB, VC	42	(J1, J2) (U1, U2) (J4) CX–DJ	5CO–5DD 5CT–50J
J5, J2/U2 J5, J3	XF, XH	XA, XB, XC	42	(J2, U2) CS–DD (J5) CX–DJ	5C0–5DD 5CT–50J

Dimensions (Ft. - In.) – Unit

Dimensions (Ft. - In.) – Unit (continued)

		COMPRE	ESSOR OPT	ION - H6 O	R H7 LOW	STAGE / HO	HIGH STA	GE					
	30" O.D. INTERCOOLER												
	COOLER - CONDENSER SHELL CODES												
	F–D F–E F–F G–D G–E G–F H–D H–E H–F												
Α	A 6' - 11" 6' - 11" 7' - 2" 7' - 1-1/2" 7' - 1-1/2" 7' - 4-1/2" 7' - 5" 7' - 5" 7' - 8"												
в	B 13' - 0" 13' - 0" 13' - 0" 13' - 0" 13' - 0" 13' - 0" 13' - 0" 13' - 0" 13' - 0" 13' - 0"												
С	12' - 0"	12' - 0"	12' - 0"	12' - 0"	12' - 0"	12' - 0"	12' - 0"	12' - 0"	12' - 0"				
D	14' - 0"	14' - 0"	14' - 0"	14' - 0"	14' - 0"	14' - 0"	14' - 0"	14' - 0"	14' - 0"				
Е	2' - 0"	2' - 0"	2' - 0"	2' - 1-1/4"	2' - 1-1/4"	2' - 1-1/4"	2' - 3"	2' - 3"	2' - 3"				
F	1' - 5-1/2"	1' - 5-1/2"	1' - 7"	1' - 5-1/2"	1' - 5-1/2"	1' - 7"	1' - 5-1/2"	1' - 5-1/2"	1' - 7"				
G	4' - 8"	4' - 8"	4' - 8"	4' - 8"	4' - 8"	4' - 8"	4' - 8"	4' - 8"	4' - 8"				
н	H 1' - 1-3/4" 1' - 1-3/4												
J	0' - 5-5/8"	0' - 5-5/8"	0' - 5-5/8"	0' - 6"	0' - 6"	0' - 6"	0' - 6"	0' - 6"	0' - 6"				

	COMPRESSOR OPTION 1 - J1 LOW STAGE / H1 (H5) HIGH STAGE											
						. ,						
	COMPRESSOR OPTION 2 - J2 LOW STAGE / H2 (H6) OR H3 (H8) HIGH STAGE											
	30" O.D. INTERCOOLER											
	COOLER - CONDENSER SHELL CODES											
	G–F G–G G–J H–F H–G H–J J–F J–G J–J											
Α	A 7' - 2" 7' - 6" 8' - 2" 7' - 6-1/2" 7' - 10-1/2" 8' - 6-1/2" 8' - 1" 8' - 5" 9' - 1"											
В	13' - 0"	13' - 0"	13' - 0"	13' - 0"	13' - 0"	13' - 0"	13' - 0"	13' - 0"	13' - 0"			
С	12' - 0"	12' - 0"	12' - 0"	12' - 0"	12' - 0"	12' - 0"	12' - 0"	12' - 0"	12' - 0"			
D	14' - 0"	14' - 0"	14' - 0"	14' - 0"	14' - 0"	14' - 0"	14' - 0"	14' - 0"	14' - 0"			
E	2' - 0"	2' - 0"	2' - 0"	2' - 2-1/4"	2' - 2-1/4"	2' - 2-1/4"	2' - 5-1/2"	2' - 5-1/2"	2' - 5-1/2"			
F	1' - 7"	1' - 9"	2' - 1"	1' - 7"	1' - 9"	2' - 1"	1' - 7"	1' - 9"	2' - 1"			
G	G 4' - 8" 4' - 8" 4' - 8" 4' - 8" 4' - 8" 4' - 8" 4' - 8" 4' - 8"											
H	1' - 11-3/4"	1' - 11-3/4"	1' - 11-3/4"	1' - 11-3/4"	1' - 11-3/4"	1' - 11-3/4"	1' - 11-3/4"	1' - 11-3/4"	1' - 11-3/4"			
J	1' - 2-3/4"	1' - 2-3/4"	1' - 2-3/4"	1' - 2-3/4"	1' - 2-3/4"	1' - 2-3/4"	1' - 2-3/4"	1' - 2-3/4"	1' - 2-3/4"			

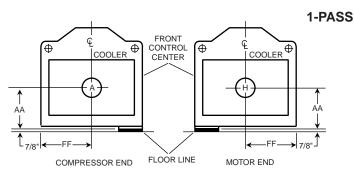
	COMPRESSOR OPTION - J3 LOW STAGE / H3 (H7) OR J1 (U1) HIGH STAGE											
	36" O.D. INTERCOOLER											
	COOLER - CONDENSER SHELL CODES											
	H–F H–G H–H J–F J–G J–H											
Α	7' - 6-1/2" 7' - 10-1/2" 8' - 2-1/2" 8' - 1" 8' - 5" 8' - 9"											
в	14' - 0"	14' - 0"	14' - 0"	14' - 0"	14' - 0"	14' - 0"						
С	13' - 0"	13' - 0"	13' - 0"	13' - 0"	13' - 0"	13' - 0"						
D	14' - 0"	14' - 0"	14' - 0"	14' - 0"	14' - 0"	14' - 0"						
Е	2' - 2-1/4"	2' - 2-1/4"	2' - 2-1/4"	2' - 5-1/2"	2' - 5-1/2"	2' - 5-1/2"						
F	1' - 7"	1' - 9"	1' - 11"	1' - 7"	1' - 9"	1' - 11"						
G	5' - 0" 5' - 0" 5' - 0" 5' - 0" 5' - 0"											
н	1' - 11-3/4" 1' - 11-3/4" 1' - 11-3/4" 1' - 11-3/4" 1' - 11-3/4" 1' - 11-3/4"											
J	1' - 11-3/4' 1' - 11-3/4' 1' - 11-3/4' 1' - 11-3/4' 1' - 11-3/4' 1' - 11-3/4' 1' - 2-3/4" 1' - 2-3/4" 1' - 2-3/4" 1' - 2-3/4" 1' - 2-3/4" 1' - 2-3/4"											

	COMPRESSOR OPTION - J3 LOW STAGE / H3 (H7) OR J1 (U1) HIGH STAGE											
	36" O.D. INTERCOOLER											
	COOLER - CONDENSER SHELL CODES											
	T–T T–V V–T V–V W–T W–V											
Ч Н П П П О В Р	9' - 1" 14' - 6" 13' - 6" 16' - 0" 2' - 5-1/2" 2' - 1" 5' - 0" 1' - 11-3/4" 1' - 2-3/4"	9' - 6" 14' - 6" 13' - 6" 16' - 0" 2' - 5-1/2" 2' - 3-1/2" 5' - 0" 1' - 11-3/4" 1' - 2-3/4"	9' - 1" 14' - 6" 13' - 6" 16' - 0" 2' - 5-1/2" 2' - 1" 5' - 0" 1' - 11-3/4" 1' - 2-3/4"		9' - 6" 14' - 6" 13' - 6" 16' - 0" 2' - 8" 2' - 1" 5' - 0" 2' - 0-3/4" 1' - 4-3/4"	9' - 11" 14' - 6" 13' - 6" 16' - 0" 2' - 8" 2' - 3-1/2" 5' - 0" 2' - 0-3/4" 1' - 4-3/4"						

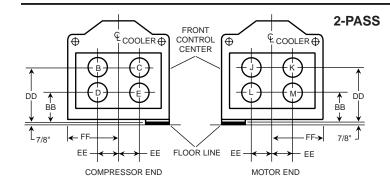
COMPRESSOR OPTION - J4 LOW STAGE / J1 (U1) OR J2 (U2) HIGH STAGE

42" O.D. INTERCOOLER

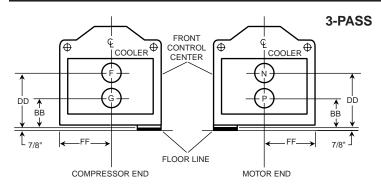
	COOLER - CONDENSER SHELL CODES								
	J–J	T–T	T–V	V–T	V–V	W–T	W–V		
Α	9' - 1"	9' - 1"	9' - 6"	9' - 1"	9' - 6"	9' - 6"	9' - 11"		
В	15' - 0"	15' - 0"	15' - 0"	15' - 0"	15' - 0"	15' - 0"	15' - 0"		
С	13' - 6"	13' - 6"	13' - 6"	13' - 6"	13' - 6"	13' - 6"	13' - 6"		
D	14' - 0"	16' - 0"	16' - 0"	16' - 0"	16' - 0"	16' - 0"	16' - 0"		
Е	2' - 5-1/2"	2' - 5-1/2"	2' - 5-1/2"	2' - 5-1/2"	2' - 5-1/2"	2' - 8"	2' - 8"		
F	2' - 1"	2' - 1"	2' - 3-1/2"	2' - 1"	2' - 3-1/2"	2' - 1"	2' - 3-1/2"		
G	5' - 2"	5' - 2"	5' - 2"	5' - 2"	5' - 2"	5' - 2"	5' - 2"		
н	1' - 11-3/4"	1' - 11-3/4"	1' - 11-3/4"	1' - 11-3/4"	1' - 11-3/4"	2' - 0-3/4"	2' - 0-3/4"		
J	1' - 2-3/4"	1' - 2-3/4"	1' - 2-3/4"	1' - 2-3/4"	1' - 2-3/4"	1' - 4-3/4"	1' - 4-3/4"		


COMPRESSOR OPTION - J5 LOW STAGE / J2 (U2) OR J3 HIGH STAGE						
42" O.D. II	NTERCOOLER					
COOLER - CONDE	ENSER SHELL CODES					
XX						
A B C D E F G H	10' - 3" 15' - 6" 13' - 6" 18' - 0" 2' - 8" 2' - 5-1/2" 5' - 2" 2' - 0-3/4"					
J	1' - 4-3/4"					

CONDENSER SHELL CODES


	NO. OF PASSES	D	E	F	G	Н	J	Т	V	Х
κ	1, 2 or 3	5-1/4"	5-1/2"	5-5/8"	5-7/8"	11-5/8"	1' - 0-1/2"	1' - 0-1/2"	1' - 1-5/8"	11-3/4"
	1	1' - 1-3/4"	1' - 1-3/4"	1' - 1-3/4"	1' - 1-3/4"	1' - 8-7/8"	1' - 9-5/8"	1' - 9-5/8"	1' - 11"	1' - 7-3/8"
L	2			1' - 1-3/4"						1' - 7-3/8"
	3	1' - 1-3/4"	1' - 1-3/4"	1' - 1-3/4"	1' - 1-3/4"	1' - 4-5/8"	1' - 6-3/4"	1' - 6-3/4"	1' - 7-1/2"	1' - 7-3/8"
	1	1' - 1-3/4"	1' - 1-3/4"	1' - 1-3/4"	1' - 1-3/4"	1' - 8-7/8"	1' - 9-5/8"	1' - 9-5/8"	1' - 11"	1' - 7-3/8"
М	2			1' - 1-3/4"				1' - 7-1/2"	1' - 10"	1' - 7-3/8"
	3	1' - 1-3/4"	1' - 1-3/4"	1' - 1-3/4"	1' - 1-3/4"	1' - 8"	1' - 10"	1' - 10"	1' - 11-1/4"	1' - 7-3/8"

Dimensions (Ft. - In.) – Nozzle Arrangements


COOLERS - COMPACT WATER BOXES - H LOW STAGE COMPRESSOR UNITS

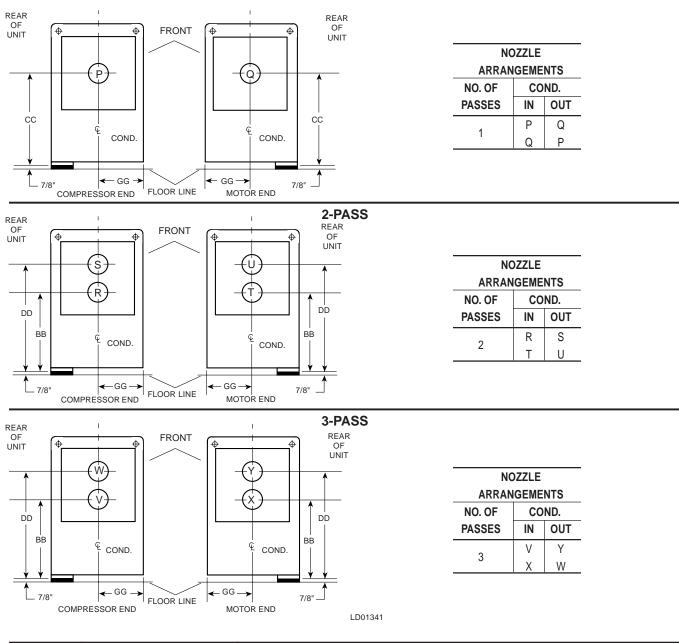
NOZZLE					
ARRAN	IGEME	NTS			
NO. OF	COC	DLER			
PASSES	IN	OUT			
1	Α	Н			
I	Н	А			

NOZZLE					
ARRAN	IGEME	NTS			
NO. OF	COO	LER			
PASSES	IN	OUT			
	D	С			
2	E	В			
2	L	К			
	М	J			

NOZZLE					
ARRAN	GEME	NTS			
NO. OF	COC	LER			
PASSES	IN	OUT			
3	G	Ν			
3	Р	F			

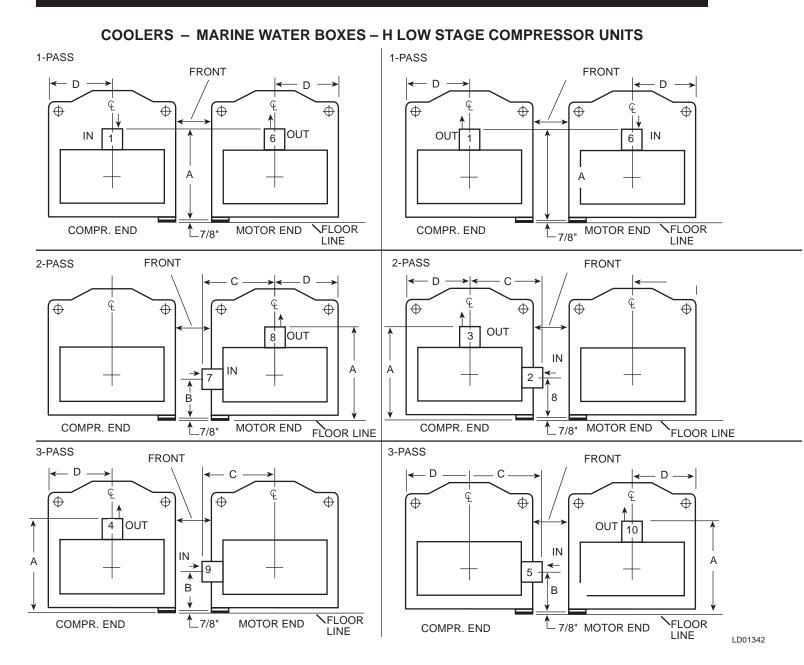
LD02712

COOLER SHELL	NOZ	ZLE PIPE	SIZE		COOLER NOZZLE DIMENSIONS							
CODE	NO. OF PASSES			1-PASS		2-PASS				3-PASS		
CODE	1	2	3	AA	FF	BB	DD	EE	FF	BB	DD	FF
F	14"	10"	8"	1'-8-1/2"	2'-0"	1'-3-1/2"	2'-1-1/2"	9"	2'-0"	1'-1-1/2"	2'-3-1/2"	2'-0"
G	16"	12"	10"	1'-9-5/8"	2'-1-1/4"	1'-3-5/8"	2'-3-5/8"	10-3/4"	2'-1-1/4"	1'-0-5/8"	2'-6-5/8"	2'–1-1/4"
Н	16"	12"	10"	1'-10-3/4"	2'-3"	1'-4-3/4"	2'-4-3/4"	10-3/4"	2'–3"	1'–1-3/4"	2'-7-3/4"	2'–3"


NOTES:

 Standard water nozzles are furnished as welding stub-outs with Victaulic grooves, allowing the option of welding, flanges, or use of Victaulic couplings. Factory installed, class 150 (ANSI B16.5, round slip-on, forged carbon steel with 1/16" raised face), water flanged nozzles are optional. Companion flanges, nuts, bolts, and gaskets are not furnished.

- 2. Add 7/8" for isolators as shown.
- 3. One-, two- and three-pass nozzle arrangements are available only in pairs shown and for all shell codes. Any pair of cooler nozzles may be used in combination with any pair of condenser nozzles.
- 4. Cooler and condenser water must enter the water box through the bottom connection to achieve rated performance.
- 5. Connected piping should allow for removal of compact water boxes for tube access and cleaning.


CONDENSERS – COMPACT WATER BOXES – H LOW STAGE COMPRESSOR UNITS

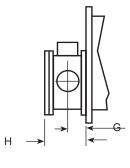
1-PASS

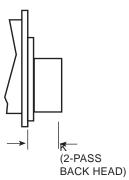
CONDENSER	NOZ	ZLE PIPE SI	ZE			NC	CONDENS DZZLE DIME				
SHELL	N	O. OF PASSE	S	1-PA	SS		2-PASS			3-PASS	
CODE	1	2	3	CC	GG	BB	DD	GG	BB	DD	GG
D	12"	8"	6"	2'–11-3/4"	1'–5-1/2"	2'-4-3/4"	3'-6-3/4"	1-5-1/2"	2'-5-3/4"	3'-7-3/4"	1'–5-1/2"
E	14"	10"	8"	3'–1-1/4"	1'–5-1/2"	2'-6-1/4"	3'-8-3/4"	1–5-1/2"	2'-6-1/4"	3'–10-1/4"	1'–5-1/2"
F	16"	12"	10"	3'-2-3/4"	1'–7"	2'-7-3/4"	4'-0"	1'–7"	2'-6-1/4"	4'-1-1/2"	1'–7"

Dimensions (Ft. - In.) – Nozzle Arrangements

COOLER	COOLER NOZZLE DIMENSIO						NS			
SHELL	1-P	ASS		2-P/	ASS			3-P/	ASS	
CODE	Α	D	A	В	С	D	A	В	С	D
F	3'-5-3/4"	2'-0"	3'-5-3/4"	1'-3-1/2"	2'-3"	2'-0"	3'-5-3/4"	1'–1-1/2"	2'-3"	2'-0"
G	3'–11-1/8"	2'-1-1/4"	3'-10-1/8"	1'-4-3/4"	2'-7"	2'-1-1/4"	3'–10-1/8"	1'-0-5/8"	2'-7"	2'-1-1/4"
Н	4'-0-1/4"	2'-3"	3'–10-1/8"	1'-4-3/4"	2'-7"	2'-3"	3'–10-1/8"	1'-0-5/8"	2'-7"	2'-3"

NOTES:


1. All dimensions are approximate. Certified dimensions are available upon request.


 Standard water nozzles are Schedule 40 pipe size, furnished as welding stub-outs with Victaulic grooves, allowing the option of welding, flanges, or use of Victaulic couplings. Factory installed, class 150 (ANSI B16.5, round slip-on, forged carbon steel with 1/16" raised face), water flanged nozzles are optional. Companion flanges, nuts, bolts, and gaskets are not furnished. Add 1/2" to Dim. A & C for flanged connections.

3. Add 7/8" for isolators as shown.

4. One-, two-, and three-pass nozzle arrangements are available only in pairs shown and for all shell codes. Any pair of cooler nozzles may be used in combination with any pair of condenser nozzles. Compact water boxes on one heat exchanger may be used with Marine Water Boxes on the other heat exchanger.

5. Water must enter the water box through the bottom connection to achieve rated performance.

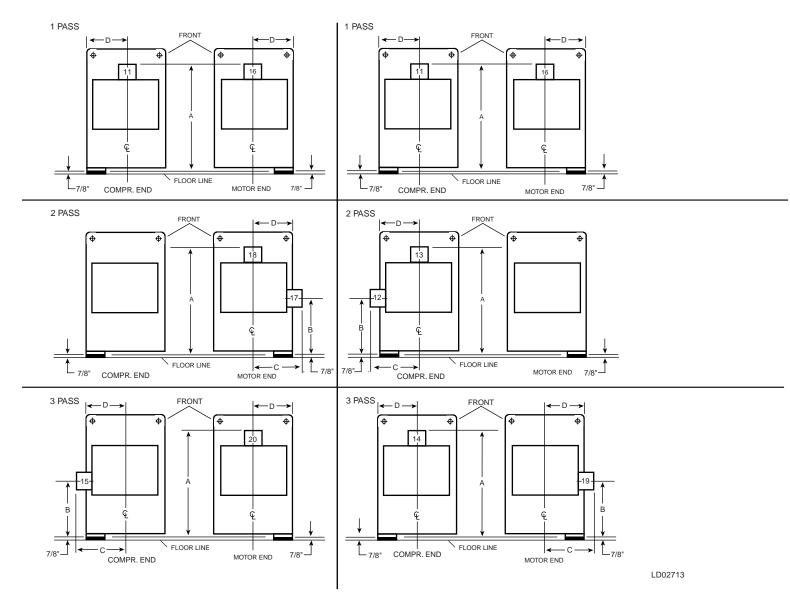
LD01342

COOLER SHELL	COOLER NOZZLE DIMENSIONS (1-PASS)				
CODE	G	Н			
F	1'–0-1/4"	2'–1-7/8"			
G	1'—1-1/4"	2'-4-3/8"			
Н	1'—1-1/4"	2'-4-3/8"			

COOLER SHELL	COOLER NOZZLE DIMENSIONS (2-PASS)					
CODE	G	Н	K			
F	9-3/4"	1'-8-7/8"	5-7/8"			
G	11-1/4"	2'-0-3/8"	6-1/4"			
н	11-1/4"	2'-0-3/8"	6-1/4"			

COOLER SHELL		NOZZLE NS (3-PASS)
CODE	G	Н
F	9-3/4"	1'-8-7/8"
G	9-3/4"	1'–9-3/8"
н	9-3/4"	1'–9-3/8"

COOLER 1-PASS			
IN OUT			
1	6		
6	1		


COOLER			
2-PASS			
IN OUT			
2	3		
7	8		

COOLER			
3-PASS			
IN OUT			
5 10			
9	4		

COOLER	NOZZLE PIPE SIZE			
SHELL	NO. OF PASSES			
CODE	1 2 3			
F	14" 10" 8"			
G	16"	12"	10"	
Н	16"	12"	10"	

Dimensions (Ft. - In.) – Nozzle Arrangements

CONDENSERS - MARINE WATER BOXES - H LOW STAGE COMPRESSOR UNITS

COND.	CONDENSER NOZZLE DIMENSIONS									
SHELL	1-PASS			2-PASS				3-P/	ASS	
CODE	A	D	A	В	С	D	A	В	С	D
D	4'-10-1/2"	1'–5-1/2"	4'-10-1/2"	2'-7"	1'-10-3/4"	1'–5-1/2"	4'-10-1/2"	2'-6-1/2"	1'–10-3/4"	1'–5-1/2"
E	5'–1-7/8"	1'–5-1/2"	5'–1-7/8"	2'-6-3/4"	2'-0-5/8"	1'–5-1/2"	5'–1-7/8"	2'-5-1/4"	2'-0-5/8"	1'-5-1/2"
F	5'-6"	1'–7"	5'-6"	2'-7-3/4"	2'-2-1/4"	1'–7"	5'–5"	2'-6-3/4"	2'–2-1/4"	1'–7"

NOTES:

^{1.} All dimensions are approximate. Certified dimensions are available upon request.

Standard water nozzles are Schedule 40 pipe size, furnished as welding stub-outs with Victaulic grooves, allowing the option of welding, flanges, or use of Victaulic couplings. Factory installed, class 150 (ANSI B16.5, round slip-on, forged carbon steel with 1/16" raised face), water flanged nozzles are optional. Companion flanges, nuts, bolts, and gaskets are not furnished. Add 1/2" to Dim. A & C for flanged connections.

^{3.} Add 7/8" for isolators as shown.

^{4.} One-, two-, and three-pass nozzle arrangements are available only in pairs shown and for all shell codes. Any pair of cooler nozzles may be used in combination with any pair of condenser nozzles. Compact water boxes on one heat exchanger may be used with Marine Water Boxes on the other heat exchanger.

^{5.} Condenser water must enter the water box through the bottom connection for proper operation of the sub-cooler to achieve rated performance.

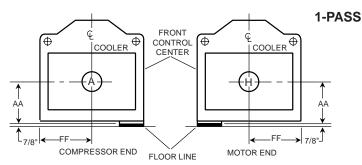
CONDENSER 1-PASS		
IN OUT		
11	16	
16	11	

LD02714

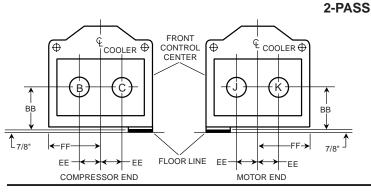
CONDENSER SHELL	COND. NOZZLE DIMENSIONS (1-PASS)			
CODE	GH			
D	11-1/8"	1'–11-5/8"		
E	1'–0-1/4"	2'–1-7/8"		
F	1'—1-1/4"	2'-4"		

CONDENSER SHELL	COND. NOZZLE DIMENSIONS (2-PASS)			
CODE	G H K			
D	8-5/8"	1'–6-5/8"	5-1/2"	
E	9-3/4"	1'–8-7/8"	5-3/4"	
F	11-1/4"	2'–0"	5-3/4"	

CONDENSER SHELL	COND. NOZZLE DIMENSIONS (3-PASS)			
CODE	G H			
D	7-5/8"	1'-4-5/8"		
E	8-3/4"	1'–6-7/8"		
F	9-3/4"	1'–9"		

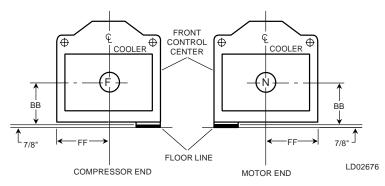

CONDENSER			
2-PASS IN OUT			
12	13		
17	18		

CONDENSER			
3-PASS			
IN OUT			
15	20		
19	14		


COND.	NOZZLE PIPE SIZE			
SHELL	NO. OF PASSES			
CODE	1 2 3			
D	12"	8"	6"	
E	14"	10"	8"	
F	16"	12"	10"	

Dimensions (Ft. - In.) – Nozzle Arrangements

COOLERS - COMPACT WATER BOXES - J LOW STAGE COMPRESSOR UNITS



NOZZLE			
ARRANGEMENTS			
NO. OF COOLER			
PASSES	IN	OUT	
1	Α	Н	
1	Н	Α	

NOZZLE				
ARRAN	IGEME	NTS		
NO. OF COOLER				
PASSES	IN	OUT		
	В	С		
2	С	В		
2	J	K		
	K	J		

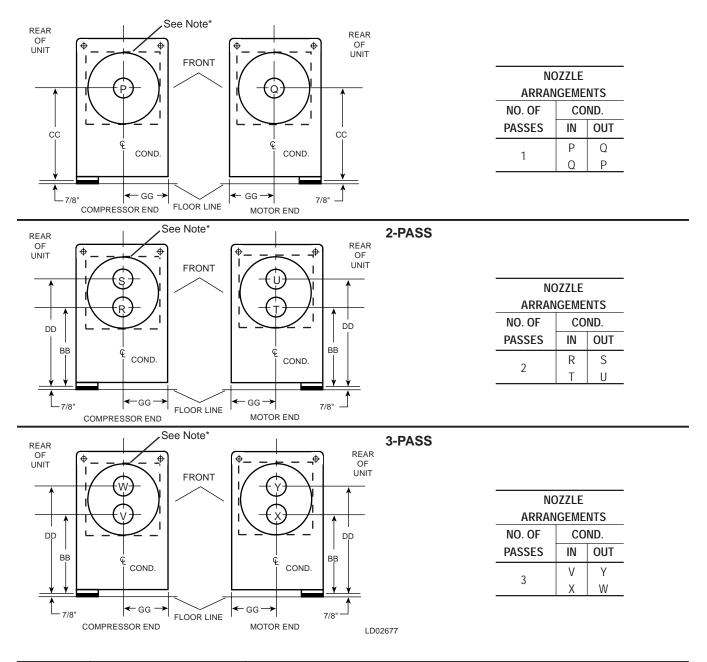
3-PASS

NOZZLE				
ARRAN	ARRANGEMENTS			
NO. OF	COOLER			
PASSES	IN	OUT		
3	F	Ν		
3	Ν	F		

COOLER	NOZ	ZLE PIPE	SIZE	COOLER NO77LE DIMENSIONS						
SHELL CODE	NO	. OF PASS	ES	1-P	ASS		2-PASS	3-PASS		
CODE	1	2	3	AA	FF	BB	EE	FF	BB	FF
G	14"	10"	8"	1'-11-1/8"	2'-0"	1'–11-1/8"	11"	2'-0"	1'-11-1/8"	2'-0"
HF	16"	12"	10"	2'-0-3/4"	2'-2-1/4"	2'-0-3/4"	11"	2'-2-1/4"	2'-0-3/4"	2'-2-1/4"
НН	16"	12"	10"	2'-1-1/2"	2'-2-1/4"	2'-1-1/2"	11"	2'-2-1/4"	2'-1-1/2"	2'-2-1/4"
J	18"	14"	12"	2'-1-3/4"	2'-5-1/2"	2'-1-3/4"	11"	2'-5-1/2"	2'-1-3/4"	2'-5-1/2"
Т	18"	14"	12"	2'-1-3/4"	2'-5-1/2"	2'-1-3/4"	11"	2'-5-1/2"	2'-1-3/4"	2'-5-1/2"
V	20"	16"	12"	2'-5-1/4"	2'-5-1/2"	2'-5-1/4"	1'–1"	2'-5-1/2"	2'-5-1/4"	2'-5-1/2"
W	20"	18"	14"	2'-7-1/4"	2'-8"	2'-7-1/4"	1'-3"	2'-8"	2'-7-1/4"	2'-8"

NOTES:

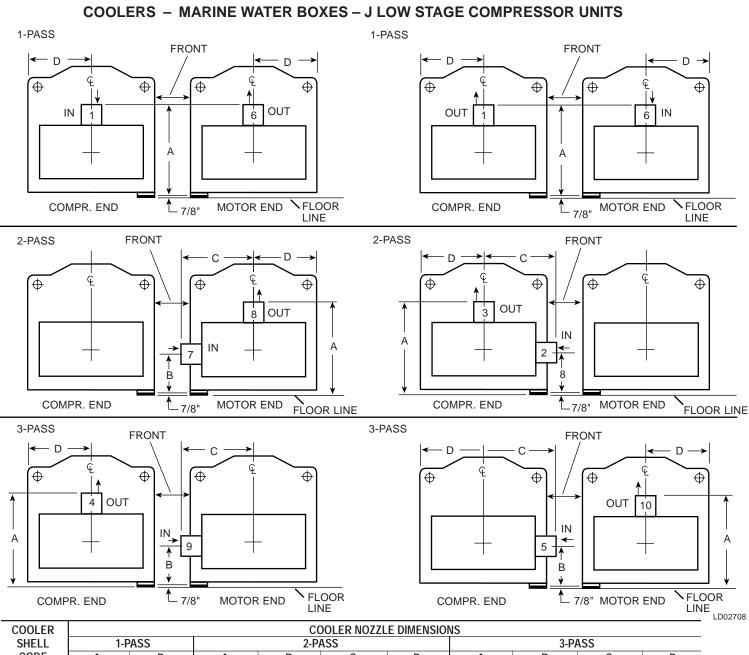
 Standard water nozzles are furnished as welding stub-outs with Victaulic grooves, allowing the option of welding, flanges, or use of Victaulic couplings. Factory installed, class 150 (ANSI B16.5, round slip-on, forged carbon steel with 1/16" raised face), water flanged nozzles are optional. Companion flanges, nuts, bolts, and gaskets are not furnished.


2. Add 7/8" for isolators as shown.

3. One-, two- and three-pass nozzle arrangements are available only in pairs shown and for all shell codes. Any pair of cooler nozzles may be used in combination with any pair of condenser nozzles.

4. Connected piping should allow for removal of compact water boxes for tube access and cleaning.

CONDENSERS – COMPACT WATER BOXES – J LOW STAGE COMPRESSOR UNITS


1-PASS

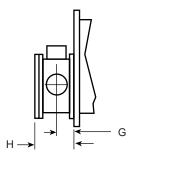
CONDENSER	NOZZLE PIPE SIZE			CONDENSER NOZZLE DIMENSIONS							
SHELL	NO	0. OF PASSI	ES .	1-PA	SS		2-PASS			3-PASS	
CODE	1	2	3	СС	GG	BB	DD	GG	BB	DD	GG
G*	16"	14"	10"	3'-4-3/4"	1'-9"	2'-6"	4'-3-1/2"	1'-9"	2'-7-1/4"	4'-3-3/4"	1'-9"
н	20"	16"	12"	3'-6-3/4"	1'–11"	2'-7-3/4"	4'-5-3/4"	1'–11"	2'-7-1/4"	4'–7-1/2"	1'–11"
J	20"	16"	14"	3'-8-3/4"	2'–1"	2'-8-1/4"	4'-9-1/4"	2'–1"	2'-9-1/4"	4'-10-3/4"	2'–1"
Т	20"	16"	14"	3'-8-3/4"	2'–1"	2'-8-1/4"	4'-9-1/4"	2'–1"	2'-9-1/4"	4'-10-3/4"	2'–1"
v	20"	18"	14"	3'-11-1/4"	2'-3-1/2"	2'-9-3/4"	5'-0-3/4"	2'-3-1/2"	2'-11-1/4"	5'–2-7/8"	2'-3-1/2"

NOTE: "G" Condenser Water Boxes are square; other codes are round as shown.

Dimensions (Ft. - In.) – Nozzle Arrangements

SHELL	1-P	PASS	2-PASS				3-P/	ASS		
CODE	A	D	A	В	С	D	A	В	С	D
G	3'-9-1/8"	2'-0"	3'-9-1/8"	1'-6-1/4"	2'-5"	2'-0"	3'-9-1/8"	1'-4-1/8"	2'-5"	2'-0"
ΗF	4'-5-1/4"	2'-2-1/4"	4'-5-1/4"	2'-2-3/4"	2'-7-1/4"	2'-2-1/4"	4'-5-1/4"	2'-1-3/4"	2'-7-1/4"	2'-2-1/4"
нн	4'-6"	2'-2-1/4"	4'-6"	2'-3-1/2"	2'-7-1/4"	2'-2-1/4"	4'-6"	2'-2-1/2"	2'-7-1/4"	2'-2-1/4"
J	3'-11-3/4"	2'-5-1/2"	3'-11-3/4"	1'–9-3/4"	2'–10-1/4"	2'-5-1/2"	3'-11-3/4"	1'-8-3/4"	2'-10-1/4"	2'-5-1/2"
Т	3'-11-3/4"	2'-5-1/2"	3'-11-3/4"	1'–9-3/4"	2'–10-1/4"	2'-5-1/2"	3'-11-3/4"	1'-8-3/4"	2'-10-1/4"	2'-5-1/2"
V	4'-3-1/4"	2'-5-1/2"	4'-3-1/4"	2'–1-1/2"	2'–10-1/4"	2'-5-1/2"	4'-3-1/4"	1'–11-7/8"	2'-10-1/4"	2'-5-1/2"
W	4'-6-1/2"	2'-6"	4'-6-1/2"	2'-3-1/2"	3'-2"	2'-6"	4'-6-1/2"	2'-1-1/2"	3'-1-7/8"	2'-6"

NOTES:


1. All dimensions are approximate. Certified dimensions are available upon request.

 Standard water nozzles are Schedule 40 pipe size, furnished as welding stub-outs with Victaulic grooves, allowing the option of welding, flanges, or use of Victaulic couplings. Factory installed, class 150 (ANSI B16.5, round slip-on, forged carbon steel with 1/16" raised face), water flanged nozzles are optional. Companion flanges, nuts, bolts, and gaskets are not furnished. Add 1/2" to Dim. A & C for flanged connections.

3. Add 7/8" for isolators as shown.

4. One-, two-, and three-pass nozzle arrangements are available only in pairs shown and for all shell codes. Any pair of cooler nozzles may be used in combination with any pair of condenser nozzles. Compact water boxes on one heat exchanger may be used with Marine Water Boxes on the other heat exchanger.

5. Water must enter the water box through the bottom connection to achieve rated performance.

– K
 (2-PASS
 BACK HEAD)

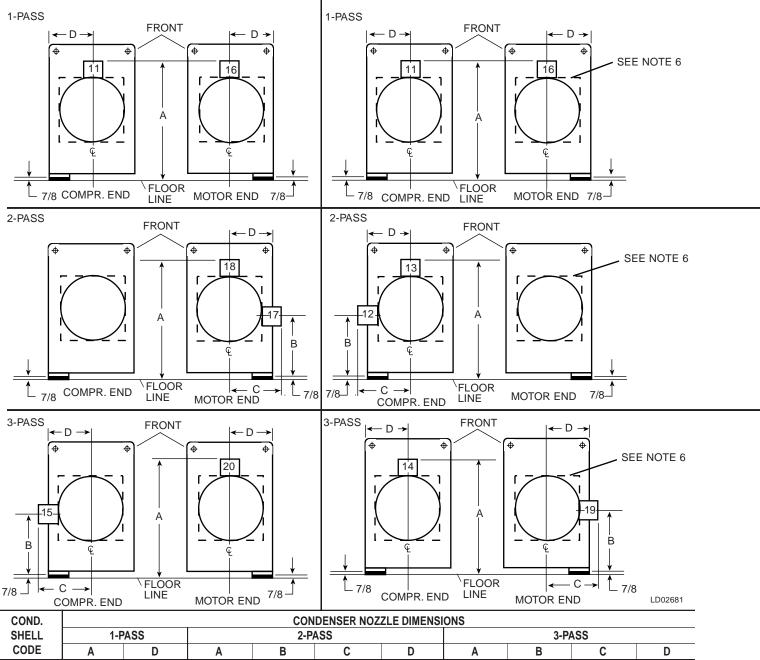
LD02708

COOLER SHELL CODE	COOLER NOZZLE DIMENSIONS (1-PASS) G H		
G	1'-0-3/8"	2'-2-1/2"	
н	1'–1-3/8"	2'-4-3/4"	
J	1'–2-3/8"	2'-6-3/4"	
Т	1'–2-3/8"	2'-6-3/4"	
V	1'—4"	2'–10"	
W	1'—4"	2'-10"	

COOLER SHELL	COOLER NOZZLE DIMENSIONS (2-PASS)			
CODE	G	Н	K	
G	10-3/8"	1'-10-1/2"	1'–2-3/4"	
н	11-3/8"	2'-0-3/4"	1'–2-3/4"	
J	1'-0-3/8"	2'-2-3/4"	1'–2-3/4"	
Т	1'-0-3/8"	2'-2-3/4"	1'–2-3/4"	
V	1'–2"	2'-6"	1'–2-3/4"	
W	1'–3"	2'-6"	1'-4-1/2"	

COOLER SHELL	COOLER NOZZLE DIMENSIONS (3-PASS)		
CODE	G	Н	
G	9-3/8"	1'–8-1/2"	
н	10-3/8"	1'–10-1/2"	
J	11-3/8"	2'-0-3/4"	
т	11-3/8"	2'-0-3/4"	
V	1'-0-3/8"	2'-2-3/4"	
W	1'—1"	2'-4"	

COOLER			
1-PASS			
IN	OUT		
1	6		
6	1		


COOLER 2-PASS			
IN	OUT		
2	3		
7	8		

COOLER 3-PASS			
IN	OUT		
5	10		
9	4		

COOLER SHELL	NOZZLE PIPE SIZE NO. OF PASSES					
CODE	1	2	3			
G	14"	10"	8"			
н	16"	12"	10"			
J	18"	14"	12"			
т	18"	14"	12"			
V	20"	16"	12"			
W	20"	18"	14"			

Dimensions (Ft. - In.) – Nozzle Arrangements

CONDENSERS - MARINE WATER BOXES - J LOW STAGE COMPRESSOR UNITS

						i				
CODE	Α	D	Α	В	С	D	A	В	С	D
G	5'-9-3/4"	1'-9"	5'-9-3/4"	2'-8-3/4"	2'-5"	1'-9"	5'-9-3/4"	2'-7-1/4"	2'-5"	1'–9"
Н	5'–11"	1'–11"	5'-10-1/4"	2'-0-3/4"	2'-1"	1'–11"	5'-9-7/8"	2'-1-1/8"	1'–11-3/4"	1'–11"
J	6'-3-3/8"	2'-1"	6'-2-3/8"	2'-1-1/2"	2'-1-1/8"	2'-1"	6'-1-7/8"	2'-1-3/4"	2'-1-7/8"	2'-1"
Т	6'-3-3/8"	2'-1"	6'-2-3/8"	2'-1-1/2"	2'-1-1/8"	2'-1"	6'-1-7/8"	2'-1-3/4"	2'-1-7/8"	2'-1"
V	6'-8-3/4"	2'-3-1/2"	6'-8-1/8"	2'-1-3/4"	2'-5-3/8"	2'-3-1/2"	6'-7"	2'-2-1/2"	2'-3-3/4"	2'-3-1/2"

NOTES:

1. All dimensions are approximate. Certified dimensions are available upon request.

2. Standard water nozzles are Schedule 40 pipe size, furnished as welding stub-outs with Victaulic grooves, allowing the option of welding, flanges, or use of Victaulic couplings. Factory installed, class 150 (ANSI B16.5, round slip-on, forged carbon steel with 1/16" raised face), water flanged nozzles are optional. Companion flanges, nuts, bolts, and gaskets are not furnished. Add 1/2" to Dim. A & C for flanged connection.

3. Add 7/8" for isolators as shown.

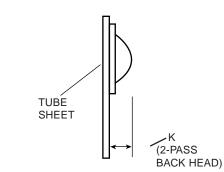
4. One-, two-, and three-pass nozzle arrangements are available only in pairs shown and for all shell codes. Any pair of cooler nozzles may be used in combination with any pair of condenser nozzles. Compact water boxes on one heat exchanger may be used with Marine Water Boxes on the other heat exchanger.

5. Condenser water must enter the water box through the bottom connection for proper operation of the sub-cooler to achieve rated performance.

6. "G" Condenser Water Boxes are square; other codes are round as shown.

LD02681

Κ


0'-5-7/8"

0'-11-5/8"

1'-0-1/2"

1'-0-1/2"

1'-1-5/8"

COND. NOZZLE

DIMENSIONS (1-PASS)

Η

2'-4-3/8"

2'-8-3/4" 2'-8-7/8"

2'-8-7/8"

2'-9-3/8"

COND. NOZZLE

DIMENSIONS (2-PASS)

н

2'-2-3/8"

2'-5-1/8"

2'-5-1/8"

2'-6-3/4"

Η

1'-9-1/8"

2'-0-1/4"

2'-2-3/8"

2'-2-3/8"

2'-2-3/4"

2'-5"

COND. NOZZLE

DIMENSIONS (3-PASS)

G

1'-1-1/4"

1'-3-1/2"

1'-3-1/2"

1'-3-1/2"

1'-3-1/2"

G

1'-0-1/4"

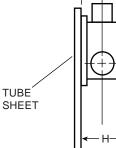
1'-1-5/8"

1'-1-5/8"

1'-1-5/8"

1'-2-1/4"

G


0'-11-1/4"

1'-0-1/4"

1'-0-1/4"

1'-0-1/4"

0'-9-5/8"

G |

CONDENSER

SHELL

CODE

G

Н

J

Т

۷

CONDENSER

SHELL

CODE

G

н

J

Т

۷

CONDENSER

SHELL

CODE

G

н

J

т

۷

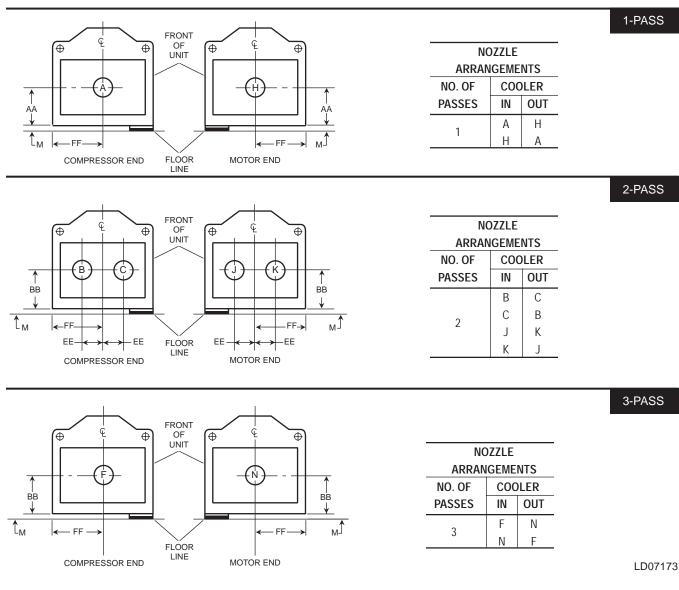
CONDENSER 1-PASS					
IN OUT					
11	16				
16	11				

CONDENSER					
2-PASS					
IN	OUT				
12	13				
17	18				

CONDENSER					
3-PASS					
IN	OUT				
15	20				
19	14				

COND.	NOZZLE PIPE SIZE					
SHELL	NO. OF PASSES					
CODE	1	2	3			
G	16"	14"	10"			
н	20"	16"	12"			
J	20"	16"	14"			
т	20"	16"	14"			
V	20"	18"	14"			

ADDITIONAL OPERATING HEIGHT CLEARANCE TO FLOOR					
TYPE OF CHILLER MOUNTING	М				
NEOPRENE PAD ISOLATORS	1-3/4"				
SPRING ISOLATORS 1" (25mm) DEFLECTION	1"				
DIRECT MOUNT	3/4"				


TYPE OF CHILLER MOUNTING	
NEOPRENE PAD ISOLATORS	
SPRING ISOLATORS 1" (25mm) DEFLECTION	
DIRECT MOUNT	

OONDENGEN						
2-PASS						
IN OUT						
12	13					
17	18					

IN OUT					
20					
14					

Dimensions (Ft. - In.) – Nozzle Arrangements

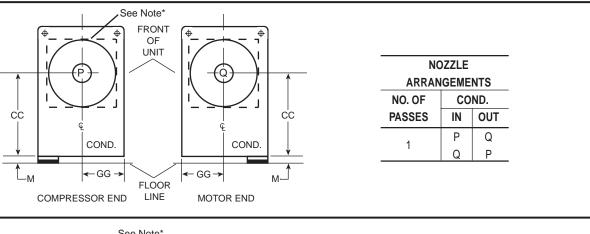
EVAPORATORS – COMPACT WATER BOXES – J LOW STAGE COMPRESSOR UNITS

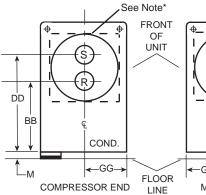
EVAP. SHELL CODE					EVAPORAT	OR				
	NOZ	ZLE PIPE SI	ZE	NOZZLE DIMENSIONS						
	NO	D. OF PASSE	S	1-PASS			2-PASS		3-PASS	
	1	2	3	AA ²	FF	BB ²	EE	FP	BB ²	FF
Х	20"	18"	14"	2'-6-1/2"	2'-8"	2'-6-1/2"	1'-3"	2'-8"	2'-6-1/2"	2'-8"

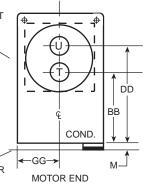
NOTES:

 Standard water nozzles are furnished as welding stub-outs with Victaulic grooves, allowing the option of welding, flanges, or use of Victaulic couplings. Factory installed, class 150 (ANSI B16.5, round slip-on, forged carbon steel with 1/16" raised face), water flanged nozzles are optional (add 1/2" to nozzle length). Companion flanges, nuts, bolts, and gaskets are not furnished.

2. Add dimension "M" as shown on pg. 35 for the appropriate isolator type.

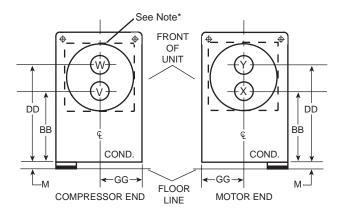

3. One-, two- and three-pass nozzle arrangements are available only in pairs shown and for all shell codes. Any pair of cooler nozzles may be used in combination with any pair of condenser nozzles.


4. Connected piping should allow for removal of compact water boxes for tube access and cleaning.


1-PASS

2-PASS

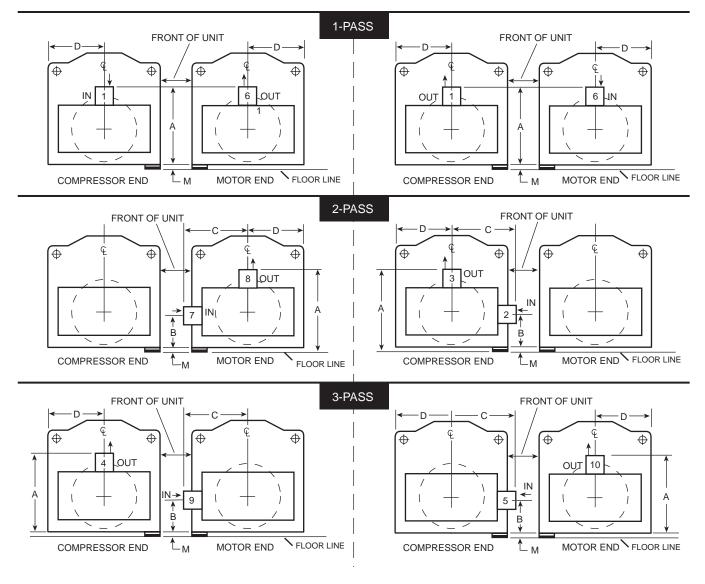
CONDENSERS - COMPACT WATER BOXES - J LOW STAGE COMPRESSOR UNITS



NOZZLE				
ARRANGEMENTS				
NO. OF COND.				
PASSES	IN	OUT		
2	R	S		
2	Т	U		

3-PASS

NOZZLE					
ARRANGEMENTS					
NO. OF	COND.				
PASSES	IN OUT				
3	V	Y			
3	Х	W			


LD07174

EVAP.							EVAPORA	TOR			
EVAP. SHELL	NOZ	zle pipe si	ZE				NOZZLE DIMENSIONS				
CODE	NO). OF PASSE	S	1-PA	1-PASS 2-PASS				3-PASS		
CODE	1	2	3	CC ²	GG	BB ²	DD ²	GG	BB ²	FF	GG
Х	24"	18"	16"	3'-5-3/4"	2'-5-1/2"	2'-4"	4'-6"	2'-5-1/2"	2'-4"	4'-6"	2'-5-1/2"

NOTES: See page 36.

Dimensions (Ft. - In.) – Nozzle Arrangements

EVAPORATORS - MARINE WATER BOXES - J LOW STAGE COMPRESSOR UNITS

EVAP.		EVAPORATOR NOZZLE DIMENSIONS								
SHELL	1-F	PASS		2-PASS			3-PASS			
CODE	A ⁵	D	A ⁵	B⁵	C	D	A ⁵	B⁵	C	D
Х	4'-5-3/4"	2'-8"	4'-5-3/4"	2'-2-3/4"	3'-2"	2'-8"	4'-5-3/4"	2'-0-3/4"	3'–1-7/8"	2'-8"

See notes on page 39.

EVAPORATOR 1-PASS				
IN OUT				
1	6			
6	1			

EVAPORATOR 2-PASS				
IN	OUT			
2	3			
7 8				

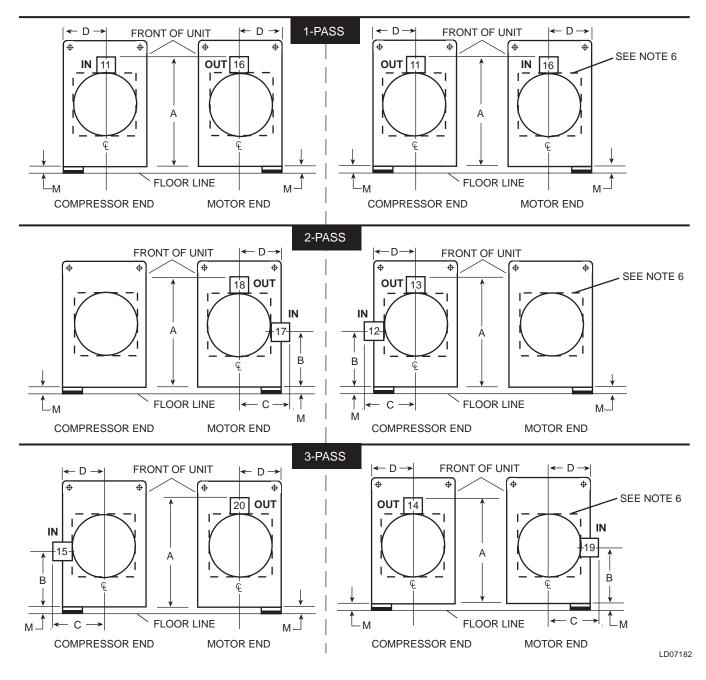
			← K (2-PASS
EVAPORATOR	EVAPORATO	OR NOZZLE	BACK HEAD)
SHELL	DIMENSION	IS (1-PASS)	LD07181
CODE	G	Н	-
х	1'–3-1/2"	2'-10"	

EVAPORATOR SHELL	EVAPORATOR NOZZLE DIMENSIONS (2-PASS)			
CODE	G	Н	К	
х	1'–2-1/2"	2'-8"	1'-4-1/2"	

EVAPORATOR 3-PASS			
IN OUT			
5	10		
9	4		

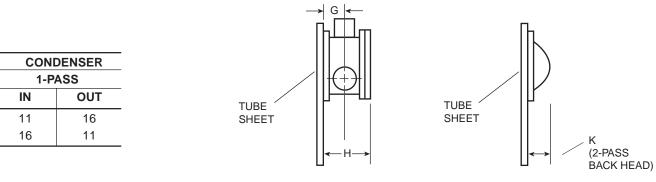
EVAPORATOR SHELL	EVAPORATOR NOZZLE DIMENSIONS (3-PASS)				
CODE	G	Н			
Х	1'-0-1/2"	2'-4"			

EVAPORATOR	NOZZLE PIPE SIZE				
SHELL	NO. OF PASSES				
CODE	1	2	3		
х	20"	18"	14"		


ADDITIONAL OPERATING HEIGHT CLEARANCE TO FLOOR				
TYPE OF CHILLER MOUNTING	М			
NEOPRENE PAD ISOLATORS	1-3/4"			
SPRING ISOLATORS 1" (25mm) DEFLECTION	1"			
DIRECT MOUNT	3/4"			

NOTES (see table on page 38):

- 1. All dimensions are approximate. Certified dimensions are available upon request.
- Standard water nozzles are Standard wall (0.375") pipe size, furnished as welding stub-outs with Victaulic grooves, allowing the option
 of welding, flanges, or use of Victaulic couplings. Factory-installed, class 150 (ANSI B16.5, round slip-on, forged carbon steel with 1/
 16" raised face), water flanged nozzles are optional (add 1/2" to nozzle length). Companion flanges, nuts, bolts, and gaskets are not
 furnished.
- 3. One-, two-, and three-pass nozzle arrangements are available only in pairs shown and for all shell codes. Any pair of evaporator nozzles may be used in combination with any pair of condenser nozzles. Compact water boxes on one heat exchanger may be used with Marine Water Boxes on the other heat exchanger.
- 4. Water must enter the water box through the bottom connection to achieve rated performance.
- 5. Add dimension "M" as shown in the above table for the appropriate isolator type.


Dimensions (Ft. - In.) – Nozzle Arrangements

CONDENSERS - MARINE WATER BOXES - J LOW STAGE COMPRESSOR UNITS

COND.				CONDE	NSER NOZ	ZLE DIMEN	SIONS			
SHELL	1-P	ASS		2-PA	SS			3-PA	SS	
CODE	A ⁵	D	A ⁵	B⁵	С	D	A ⁵	B⁵	С	D
Х	6'–5"	2'-5-1/2"	6'–5"	2'-5-1/2"	2'–10"	2'-5-1/2"	6'-5"	2'-2-9/16"	2'-10'	2'-5-1/2"

See Notes on page 41.

LD07183

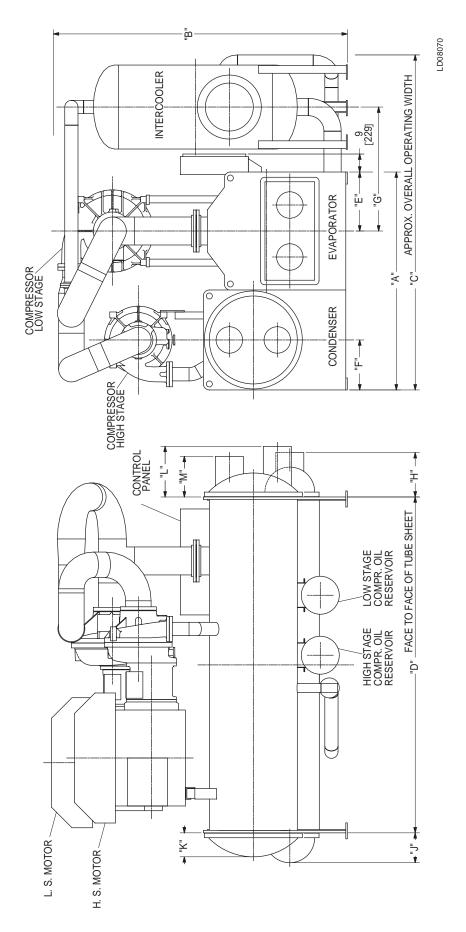
CONDENSER	DESIGN WORKING	COND. NOZZLE DIMENSIONS (1-PASS)		
CODE	PRESSURE (PSIG)	G H		
x	150	1'–5-7/8"	3'-2-1/4"	
^	300	1'–10-7/16"	4'-0-3/8"	

CONDENSER SHELL	DESIGN WORKING	-	COND. NOZZL ENSIONS (2-P	
CODE	PRESSURE (PSIG)	G	н	к
х	150	1'–2-1/8"	2'-7-1/4"	0'–11-11/16"
^	300	1'–5-3/16"	3'–1-7/8"	1'-1-1/8"

CONDENSER SHELL	DESIGN WORKING	COND. I DIMENSION	NOZZLE IS (3-PASS)
CODE	PRESSURE (PSIG)	G	н
x	150	1'-1-5/8"	2'-5-3/4"
X	300	1'–3-15/16"	2'-11-3/8"

CONDENSER 2-PASS				
IN OUT				
12	13			
17	18			

	DENSER
IN	OUT
15	20
19	14


COND.	NOZZLE PIPE SIZE						
SHELL	NO	. OF PASS	ES				
CODE	1	2	3				
х	24"	18"	16"				

NOTES (see table on page 40):

1. All dimensions are approximate. Certified dimensions are available upon request.

- Standard water nozzles are standard wall (0.375) pipe size, furnished as welding stub-outs with Victaulic grooves, allowing the option
 of welding, flanges, or use of Victaulic couplings. Factory-installed, class 150 (ANSI B16.5, round slip-on, forged carbon steel with 1/
 16" raised face), water flanged nozzles are optional (add 1/2" to nozzle length). Companion flanges, nuts, bolts, and gaskets are not
 furnished.
- 3. One-, two-, and three-pass nozzle arrangements are available only in pairs shown and for all shell codes. Any pair of evaporator nozzles may be used in combination with any pair of condenser nozzles. Compact water boxes on one heat exchanger may be used with Marine Water Boxes on the other heat exchanger.
- 4. Condenser water must enter the water box through the bottom connection for proper operation of the sub-cooler to achieve rated performance.
- 5. Add dimension "M" as shown on pg 39 for the appropriate isolator type.

Dimensions (mm) – Unit

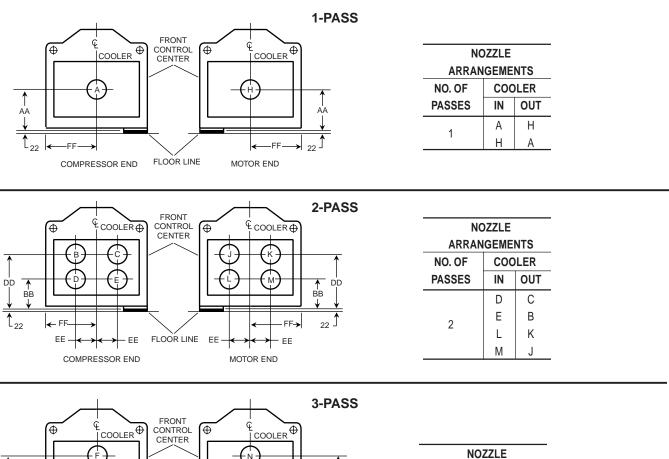
	COMPRESSOR OPTION - H6 OR H7 LOW STAGE / H0 HIGH STAGE											
	30" O.D. INTERCOOLER											
	COOLER - CONDENSER SHELL CODES											
	F–D	F–E	F–F	G–D	G–E	G–F	H–D	H–E	H–F			
Α	2,108	2,108	2,184	2,172	2,172	2,248	2,261	2,261	2,337			
В	3,962	3,962	3,962	3,962	3,962	3,962	3,962	3,962	3,962			
С	3,658	3,658	3,658	3,658	3,658	3,658	3,658	3,658	3,658			
D	4,267	4,267	4,267	4,267	4,267	4,267	4,267	4,267	4,267			
E	610	610	610	641	641	641	686	686	686			
F	445	445	483	445	445	483	445	445	483			
G	1,422	1,422	1,422	1,422	1,422	1,422	1,422	1,422	1,422			
H	350	350	350	350	350	350	350	350	350			
J	143	143	143	153	153	153	153	153	153			

	COMPRESSOR OPTION 1 - J1 LOW STAGE / H1 (H5) HIGH STAGE										
	COMPRESSOR OPTION 2 - J2 LOW STAGE / H2 (H6) OR H3 (H8) HIGH STAGE										
	30" O.D. INTERCOOLER										
			COOL	ER - COND	ENSER SH	ELL CODES	5				
	G–F	G–G	G–J	H–F	H–G	H–J	J–F	J–G	J–J		
Α	2,184	2,286	2,489	2,299	2,400	2,604	2,464	2,565	2,769		
В	3,962	3,962	3,962	3,962	3,962	3,962	3,962	3,962	3,962		
С	3,658	3,658	3,658	3,658	3,658	3,658	3,658	3,658	3,658		
D	4,267	4,267	4,267	4,267	4,267	4,267	4,267	4,267	4,267		
Е	610	610	610	667	667	667	749	749	749		
F	483	533	635	483	533	635	483	533	635		
G	1,422	1,422	1,422	1,422	1,422	1,422	1,422	1,422	1,422		
н	603	603	603	603	603	603	603	603	603		
J	375	375	375	375	375	375	375	375	375		

	COMPRESSOR OPTION - J3 LOW STAGE / H3 (H7) OR											
	J1 (U1) HIGH STAGE											
	36" O.D. INTERCOOLER											
		COOLER - C	ONDENSE	R SHELL C	ODES							
	H–F H–G H–H J–F J–G J–H											
Α	2,299	2,400	2,502	2,464	2,565	2,667						
В	4,267	4,267	4,267	4,267	4,267	4,267						
С	3,962	3,962	3,962	3,962	3,962	3,962						
D	4,267	4,267	4,267	4,267	4,267	4,267						
Е	667	667	667	749	749	749						
F	483	533	584	483	533	584						
G	1,524 1,524 1,524 1,524 1,524 1,524											
н	603	603	603	603	603	603						
J	375	375	375	375	375	375						

Dimensions (mm) – Unit (continued)

	COMPRESSOR OPTION - J3 LOW STAGE / H3 (H7) OR J1 (U1) HIGH STAGE										
	36" O.D. INTERCOOLER										
		COOLER - C	ONDENSE	R SHELL C	ODES						
	T–T T–V V–T V–V W–T W–V										
Α	2,769	2,896	2,769	2,896	2,896	3,023					
в	4,420	4,420	4,420	4,420	4,420	4,420					
С	4,115	4,115	4,115	4,115	4,115	4,115					
D	4,877	4,877	4,877	4,877	4,877	4,877					
Е	749	749	749	749	813	813					
F	635	699	635	699	635	699					
G	1,524	1,524	1,524	1,524	1,524	1,524					
н	603	603	603	603	629	629					
J	375	375	375	375	426	426					


COMPRESSOR OPTION - J4 LOW STAGE / J1 (U1) OR J2 (U2) HIGH STAGE

	42" O.D. INTERCOOLER										
	COOLER - CONDENSER SHELL CODES										
	J–J T–T T–V V–T V–V W–T W–V										
Α	2,769	2,769	2,896	2,769	2,896	2,896	3,023				
В	4,572	4,572	4,572	4,572	4,572	4,572	4,572				
С	4,115	4,115	4,115	4,115	4,115	4,115	4,115				
D	4,267	4,877	4,877	4,877	4,877	4,877	4,877				
Е	749	749	749	749	749	813	813				
F	635	635	699	635	699	635	699				
G	1,575	1,575	1,575	1,575	1,575	1,575	1,575				
н	603	603	603	603	603	629	629				
J	375	375	375	375	375	426	426				

COMPRESSOR OPTION - J5 LOW STAGE / J2 (U2) OR J3 HIGH STAGE						
42" O.D. II	NTERCOOLER					
COOLER - CONDE	ENSER SHELL CODES					
	XX					
A B C D E F G H	3,124 4,724 4,115 5,486 813 749 1,575 629					
J	426					

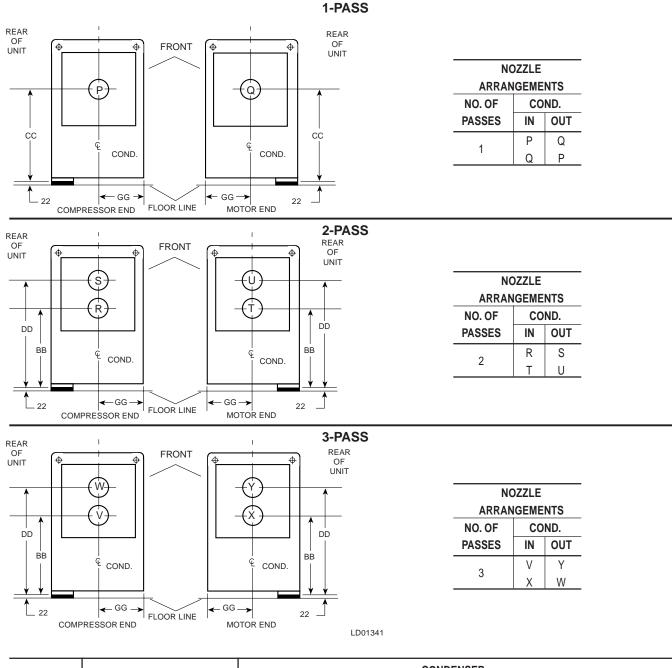
	CONDENSER SHELL CODES									
	NO. OF PASSES	D	E	F	G	Н	J	Т	V	X
κ	1, 2 or 3	133	140	143	149	295	318	318	346	299
L	1 2 3	349 349 349	349 349 349	349 349 349	349 349 349	530 460 422	549 495 476	549 495 476	4,267 3,962 4,267	492 492 492
М	1 2 3	349 349 349	349 349 349	349 349 349	349 349 349	530 460 508	549 495 559	549 495 559	749 584 1,524	492 492 492

COOLERS – COMPACT WATER BOXES – H LOW STAGE COMPRESSOR UNITS

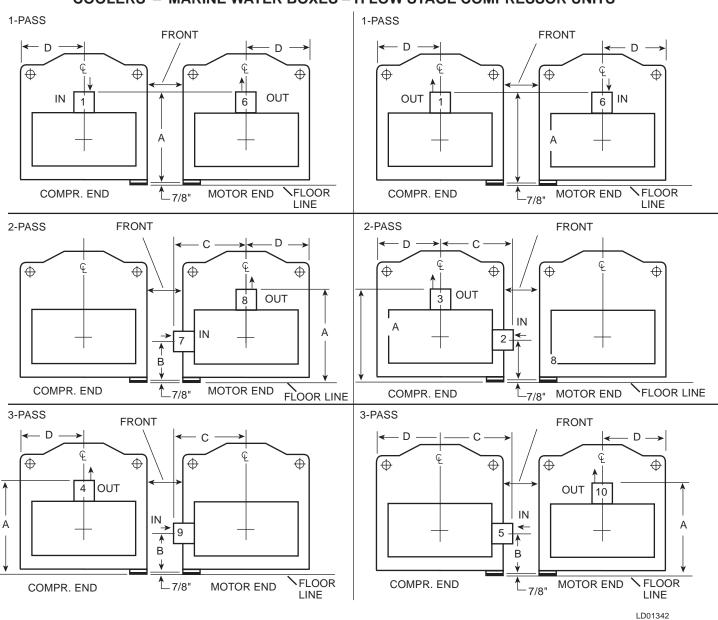
		FRONT CONTROL CENTER	
1 ₂₂	← FF →	FLOOR LINE	← FF 22 Ĵ
	 COMPRESSOR END	I LOOK LINE	 MOTOR END

NOZZLE							
ARRAN	ARRANGEMENTS						
NO. OF	NO. OF COOLER						
PASSES	IN	OUT					
3	G	Ν					
3	Р	F					

LD02712


COOLER SHELL CODE	NOZ	ZLE PIPE	SIZE		COOLER NOZZLE DIMENSIONS								
	NO. OF PASSES			1-PASS		2-PASS				3-PASS			
	1	2	3	AA	FF	BB	DD	EE	FF	BB	DD	FF	
F	14"	10"	8"	521	610	394	648	229	610	343	699	610	
G	16"	12"	10"	549	641	397	702	273	641	321	778	641	
Н	16"	12"	10"	578	686	425	730	273	686	349	806	686	

NOTES:


 Standard water nozzles are furnished as welding stub-outs with Victaulic grooves, allowing the option of welding, flanges, or use of Victaulic couplings. Factory installed, class 150 (ANSI B16.5, round slip-on, forged carbon steel with 1.6 mm raised face), water flanged nozzles are optional. Companion flanges, nuts, bolts, and gaskets are not furnished.

- 2. Add 22 mm for isolators as shown.
- 3. One-, two- and three-pass nozzle arrangements are available only in pairs shown and for all shell codes. Any pair of cooler nozzles may be used in combination with any pair of condenser nozzles.
- 4. Cooler and condenser water must enter the water box through the bottom connection to achieve rated performance.
- 5. Connected piping should allow for removal of compact water boxes for tube access and cleaning.

CONDENSERS – COMPACT WATER BOXES – H LOW STAGE COMPRESSOR UNITS

CONDENSER	NOZZLE PIPE SIZE				CONDENSER NOZZLE DIMENSIONS								
SHELL	NO. OF PASSES			1-PASS		2-PASS			3-PASS				
CODE	1	2	3	сс	GG	BB	DD	GG	BB	DD	GG		
D	12"	8"	6"	908	445	756	1,086	445	756	1,111	445		
E	14"	10"	8"	946	445	743	1,162	445	768	1,175	445		
F	16"	12"	10"	984	483	737	1,232	483	768	1,257	483		

IARINE WATER BOXES -		
IANINE WATER DURES -	I LUW STAGE CUM	FRESSUR UNITS

COOLER	COOLER NOZZLE DIMENSIONS												
SHELL	1-P.	ASS		2-PASS			3-PASS						
CODE	А	D	A	В	С	D	A	В	С	D			
F	1,060	610	1,060	394	686	610	1,060	343	686	610			
G	1,197	641	1,172	425	787	641	1,172	321	787	641			
H	1,226	686	1,200	454	787	686	1,200	349	787	686			

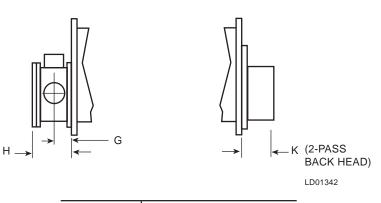
NOTES:

1. All dimensions are approximate. Certified dimensions are available upon request.

2. Standard water nozzles are Schedule 40 pipe size, furnished as welding stub-outs with Victaulic grooves, allowing the option of welding, flanges, or use of Victaulic couplings. Factory installed, class 150 (ANSI B16.5, round slip-on, forged carbon steel with 1.6 mm raised face), water flanged nozzles are optional. Companion flanges, nuts, bolts, and gaskets are not furnished. Add 13 mm to Dim. A & C for flanged connections.

3. Add 22 mm for isolators as shown.

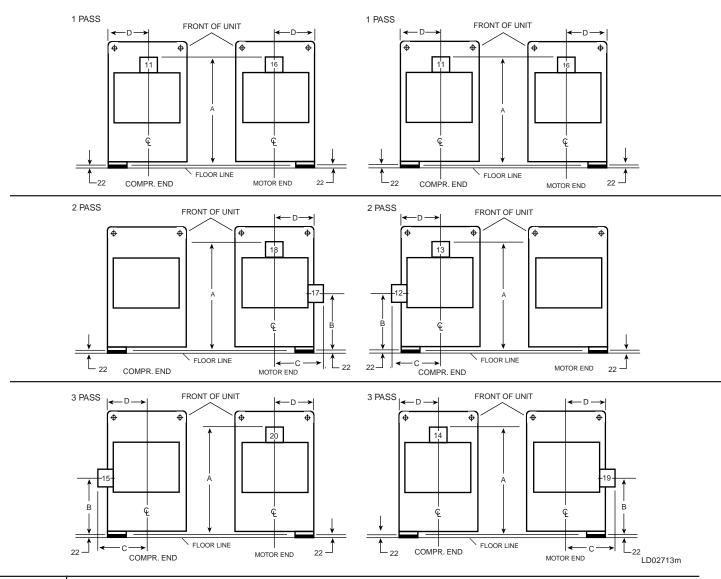
4. One-, two-, and three-pass nozzle arrangements are available only in pairs shown and for all shell codes. Any pair of cooler nozzles may be used in combination with any pair of condenser nozzles. Compact water boxes on one heat exchanger may be used with Marine Water Boxes on the other heat exchanger.


5. Water must enter the water box through the bottom connection to achieve rated performance.

COOLER 1-PASS					
IN	OUT				
1	6				
6	1				

COOLER 2-PASS					
IN	OUT				
2	3				
7	8				

COOLER 3-PASS					
IN	OUT				
5	10				
9	4				


COOLER	NOZZLE PIPE SIZE							
SHELL	NO. OF PASSES							
CODE	1	2	3					
F	14"	10"	8"					
G	16"	12"	10"					
н	16"	12"	10"					

COOLER SHELL	COOLER NOZZLE DIMENSIONS (1-PASS)		
CODE	G	Н	
F	311	657	
G	337	721	
н	337	721	

COOLER SHELL	COOLER NOZZLE DIMENSIONS (2-PASS)		
CODE	G	Н	K
F	258	530	149
G	286	619	159
Н	286	619	159

COOLER SHELL	COOLER NOZZLE DIMENSIONS (3-PASS)		
CODE	G	Н	
F	248	530	
G	248	543	
н	248	543	

CONDENSERS – MARINE WATER BOXES – H LOW STAGE COMPRESSOR UNITS

COOLER	CONDENSER NOZZLE DIMENSIONS									
SHELL	1-PASS		2-PASS			3-P/	ASS			
CODE	Α	D	A	В	С	D	A	В	С	D
D	1486	444	1486	787	578	445	1486	775	578	445
E	1572	444	1572	781	625	445	1572	743	625	445
F	1676	483	1676	806	667	483	1651	781	667	483

NOTES:


1. All dimensions are approximate. Certified dimensions are available upon request.

2. Standard water nozzles are Schedule 40 pipe size, furnished as welding stub-outs with Victaulic grooves, allowing the option of welding, flanges, or use of Victaulic couplings. Factory installed, class 150 (ANSI B16.5, round slip-on, forged carbon steel with 1.6 mm raised face), water flanged nozzles are optional. Companion flanges, nuts, bolts, and gaskets are not furnished. Add 13mm to Dim. A & C. for flanged connections.

3. Add 22 mm for isolators as shown.

4. One-, two-, and three-pass nozzle arrangements are available only in pairs shown and for all shell codes. Any pair of cooler nozzles may be used in combination with any pair of condenser nozzles. Compact water boxes on one heat exchanger may be used with Marine Water Boxes on the other heat exchanger.

5. Condenser water must enter the water box through the bottom connection for proper operation of the sub-cooler to achieve rated performance.

CODE

D

Ε

F

COND.

SHELL

CODE

D

D

Ε

F

G

283

311

337

G

219

194

222

248

Н

600

657

711

CONDENSER NOZZLE

DIMENSIONS (2-PASS)

н 473

422

479

533

Κ

140

146

146

CONDENSER 2-PASS		
IN OUT		
12	13	
17	18	

CONDENSER 1-PASS

OUT

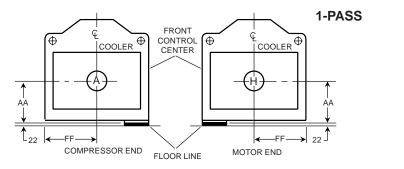
16

11

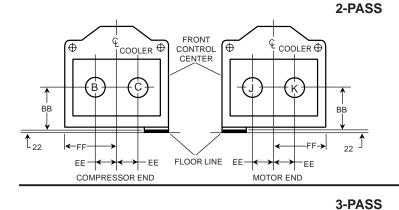
IN

11

16


CONDENSER			
3-PASS			
IN	IN OUT		
15	20		
19	14		

_	E F	248 286	530 610
	COND.	CONDENS	ER NOZZLE
	SHELL	DIMENSION	NS (3-PASS)
	CODE	G	Н


COND.	NOZ	ZLE PIPE \$	SIZE
SHELL	NO. OF PASSES		
CODE	1	2	3
D	12"	8"	6"
Е	14"	10"	8"
F	16"	12"	10"

ADDITIONAL OPERATING HEIGHT CLEARANCE TO FLOOR		
TYPE OF CHILLER MOUNTING	Μ	
NEOPRENE PAD ISOLATORS	44	
SPRING ISOLATORS 1" (25mm) DEFLECTION	25	
DIRECT MOUNT	19	

COOLERS - COMPACT WATER BOXES - J LOW STAGE COMPRESSOR UNITS

NOZZLE			
ARRANGEMENTS			
COOLER			
IN OUT			
Α	Н		
H A			
	GEME COC IN		

	DZZLE	
ARRAN	GEME	NTS
NO. OF	C00	LER
PASSES	IN	OUT
	В	С
2	С	В
2	J	К
	К	J

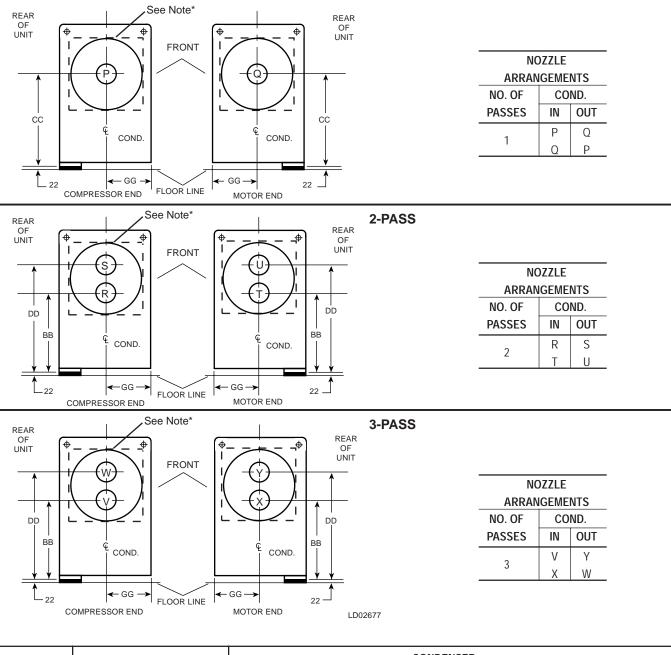
FRONT CONTROL CENTER BB COOLER COOLER FRONT CENTER COOLER COOLER COOLER BB COOLER COOLER FRONT CONTROL CENTER COOLER COOL

NOZZLE			
ARRANGEMENTS			
COOLER			
IN OUT			
F	Ν		
3 N F			
	IGEME COC IN		

COOLER SHELL	NOZ	ZLE PIPE	SIZE		COOLER NOZZLE DIMENSIONS					
CODE	NO	. OF PASS	SES	1-P	ASS		2-PASS		3-PA	SS
CODE	1	2	3	AA	FF	BB	EE	FF	BB	FF
G	14"	10"	8"	587	610	587	279	610	587	610
HF	16"	12"	10"	629	667	629	279	667	629	667
НН	16"	12"	10"	648	667	648	279	667	648	667
J	18"	14"	12"	654	749	654	279	749	654	749
Т	18"	14"	12"	654	749	654	279	749	654	749
V	20"	16"	12"	743	749	743	330	749	743	749
W	20"	18"	14"	794	813	794	381	813	794	813

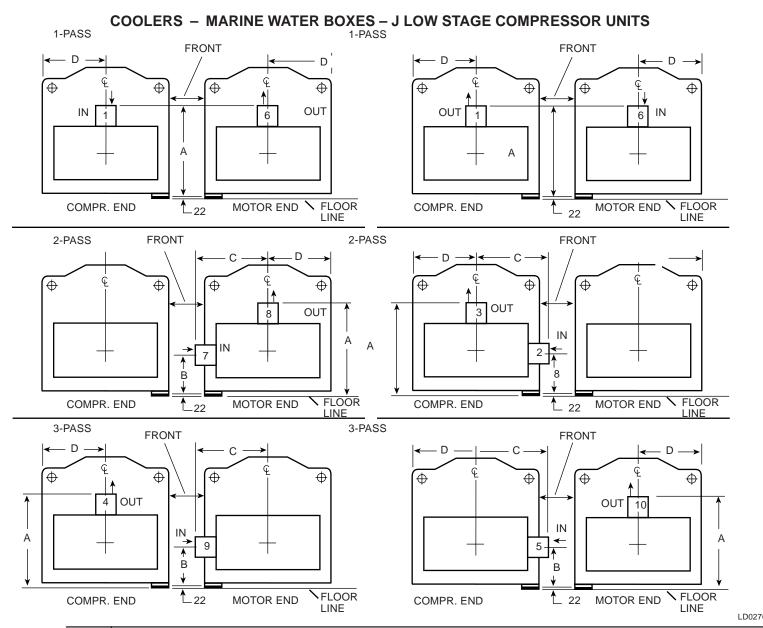
NOTES:

 Standard water nozzles are furnished as welding stub-outs with Victaulic grooves, allowing the option of welding, flanges, or use of Victaulic couplings. Factory installed, class 150 (ANSI B16.5, round slip-on, forged carbon steel with 1.6 mm raised face), water flanged nozzles are optional. Companion flanges, nuts, bolts, and gaskets are not furnished.


2. Add 22 mm for isolators as shown.

3. One-, two- and three-pass nozzle arrangements are available only in pairs shown and for all shell codes. Any pair of cooler nozzles may be used in combination with any pair of condenser nozzles.

4. Connected piping should allow for removal of compact water boxes for tube access and cleaning.


CONDENSERS - COMPACT WATER BOXES - J LOW STAGE COMPRESSOR UNITS

1-PASS

CONDENSER	NOZZLE PIPE SIZE			CONDENSER							
	NOZ	ZLE PIPE SI	ZE		NOZZLE DIMENSIONS						
SHELL	N	0. OF PASSI	S	1-PASS		2-PASS		3-PASS			
CODE	1	2	3	CC	GG	BB	DD	GG	BB	DD	GG
G*	16"	14"	10"	1,035	533	762	1,308	533	794	1,314	533
Н	20"	16"	12"	1,086	584	806	1,365	584	794	1,410	584
J	20"	16"	14"	1,137	635	819	1,454	635	845	1,492	635
Т	20"	16"	14"	1,137	635	819	1,454	635	845	1,492	635
V	20"	18"	14"	1,200	699	857	1,543	699	895	1,597	699

* NOTE: "G" Condenser Water Boxes are square; other codes are round as shown.

COOLER	COOLER NOZZLE DIMENSIONS									
SHELL	1-F	PASS		2-P/	ASS		3-PASS			
CODE	Α	D	A	В	C	D	A	В	С	D
G	1,146	610	1,146	470	737	610	1,146	410	737	610
ΗF	1,353	667	1,353	679	794	667	1,353	654	794	667
HH	1,372	667	1,372	698	794	667	1,372	673	794	667
J	1,213	749	1,213	552	870	749	1,213	527	870	749
Т	1,213	749	1,213	552	870	749	1,213	527	870	749
V	1,302	749	1,302	648	870	749	1,302	606	870	749
W	1,384	762	1,384	698	965	762	1,384	648	962	762

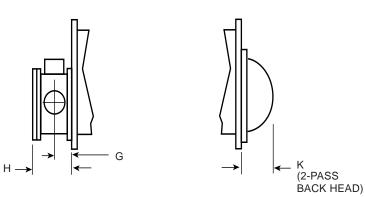
NOTES:

1. All dimensions are approximate. Certified dimensions are available upon request.

2. Standard water nozzles are Schedule 40 pipe size, furnished as welding stub-outs with Victaulic grooves, allowing the option of welding, flanges, or use of Victaulic couplings. Factory installed, class 150 (ANSI B16.5, round slip-on, forged carbon steel with 1.6 mm raised face), water flanged nozzles are optional. Companion flanges, nuts, bolts, and gaskets are not furnished. Add 13 mm to Dim. A & C for flanged connections.

3. Add 22 mm for isolators as shown.

4. One-, two-, and three-pass nozzle arrangements are available only in pairs shown and for all shell codes. Any pair of cooler nozzles may be used in combination with any pair of condenser nozzles. Compact water boxes on one heat exchanger may be used with Marine Water Boxes on the other heat exchanger.

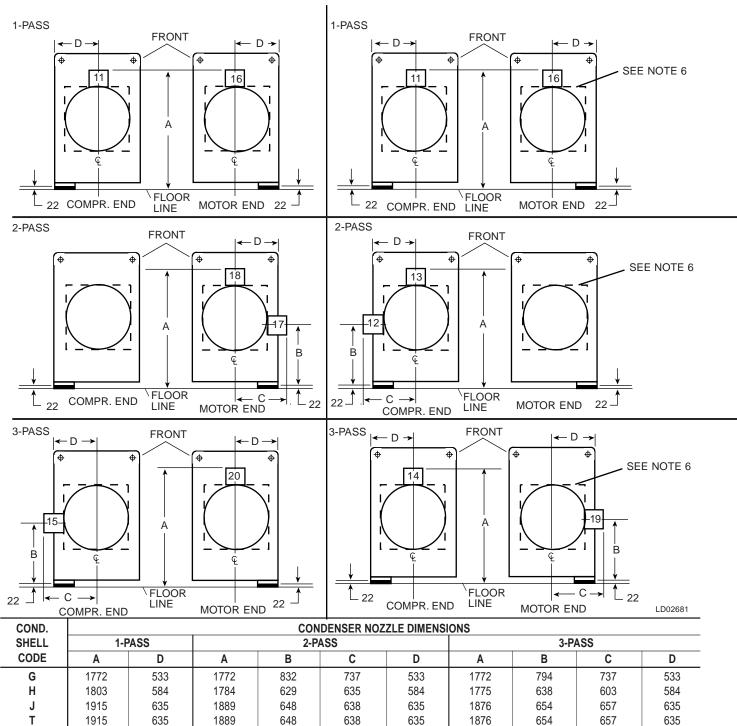

5. Water must enter the water box through the bottom connection to achieve rated performance. YORK INTERNATIONAL

COOLER 1-PASS				
IN	OUT			
1	6			
6	1			

COOLER 2-PASS			
IN	OUT		
2	3		
7	8		

COOLER					
3-PASS					
IN OUT					
5	10				
9	4				

COOLER	NOZZLE PIPE SIZE				
SHELL	NO. OF PASSES				
CODE	1	2	3		
G	14"	10"	8"		
н	16"	12"	10"		
J	18"	14"	12"		
т	18"	14"	12"		
V	20"	16"	12"		
W	20"	16"	14"		



LD02708

COOLER SHELL CODE	COOLER NOZZLE DIMENSIONS (1-PASS) G H				
G	314	673			
н	340	730			
J	365	781			
Т	365	781			
V	406	864			
W	406	864			

COOLER SHELL	COOLER NOZZLE DIMENSIONS (2-PASS)				
CODE	G	Н	K		
G	264	572	375		
н	289	629	375		
J	314	679	375		
Т	314	679	375		
V	356	762	375		
W	381	813	419		

COOLER SHELL CODE		NOZZLE NS (3-PASS) H	
G	238	521	
Н	264	572	
J	289	629	
Т	289	629	
V	314	679	
W	330	711	

CONDENSERS – MARINE WATER BOXES – J LOW STAGE COMPRESSOR UNITS

V NOTES:

1. All dimensions are approximate. Certified dimensions are available upon request.

2035

654

2. Standard water nozzles are Schedule 40 pipe size, furnished as welding stub-outs with Victaulic grooves, allowing the option of welding, flanges, or use of Victaulic couplings. Factory installed, class 150 (ANSI B16.5, round slip-on, forged carbon steel with 1.6 mm raised face), water flanged nozzles are optional. Companion flanges, nuts, bolts, and gaskets are not furnished. Add 13 mm to Dim. A & C for flanged connections.

746

699

2007

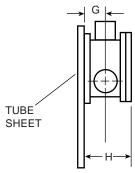
673

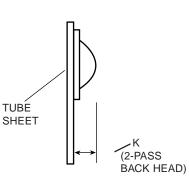
705

3. Add 22 mm for isolators as shown.

2051

699


4. One-, two-, and three-pass nozzle arrangements are available only in pairs shown and for all shell codes. Any pair of cooler nozzles may be used in combination with any pair of condenser nozzles. Compact water boxes on one heat exchanger may be used with Marine Water Boxes on the other heat exchanger.


5. Condenser water must enter the water box through the bottom connection for proper operation of the sub-cooler to achieve rated performance.

6. "G" Condenser Water Boxes are square; other codes are round as shown.

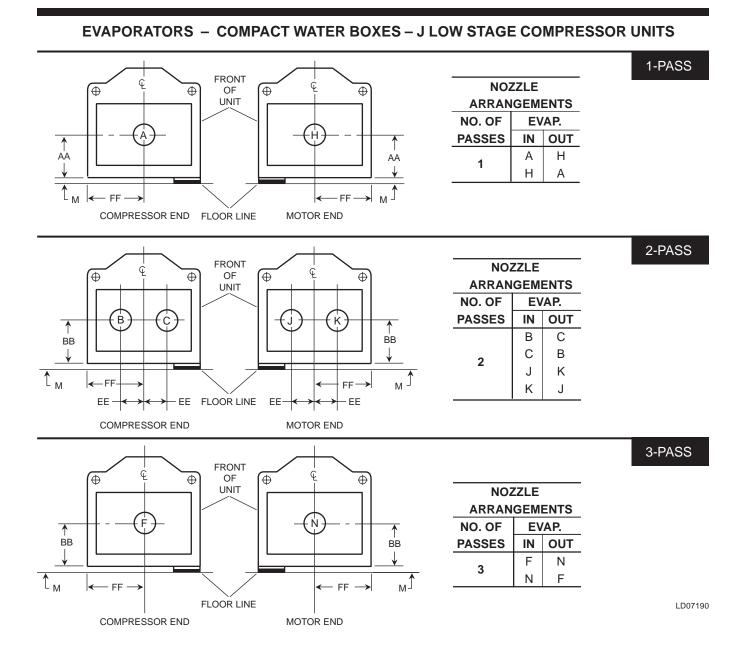
YORK INTERNATIONAL

699

LD02681

CONDENSER SHELL	COND. NOZZLE DIMENSIONS (1-PASS)			
CODE	G	Н		
G	337	721		
н	394	832		
J	394	835		
т	394	835		
V	394	848		

CONDENSER SHELL	COND. NOZZLE DIMENSIONS (2-PASS)				
CODE	G	Н	К		
G	311	670	149		
н	346	737	295		
J	346	740	318		
т	346	740	318		
V	362	781	346		


CONDENSER SHELL	•••••	NOZZLE NS (3-PASS)
CODE	G	Н
G	244	537
Н	286	616
J	311	670
Т	311	670
V	311	679

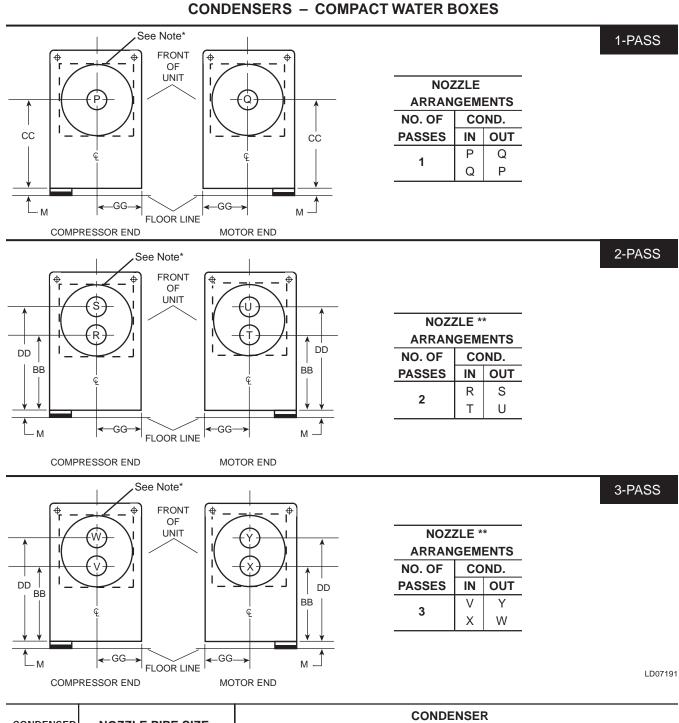
CONDENSER 1-PASS					
IN	OUT				
11	16				
16	11				

CONDENSER				
2-PASS				
IN OUT				
12	13			
17	18			

CONDENSER					
3-PASS					
IN	OUT				
15	20				
19	14				

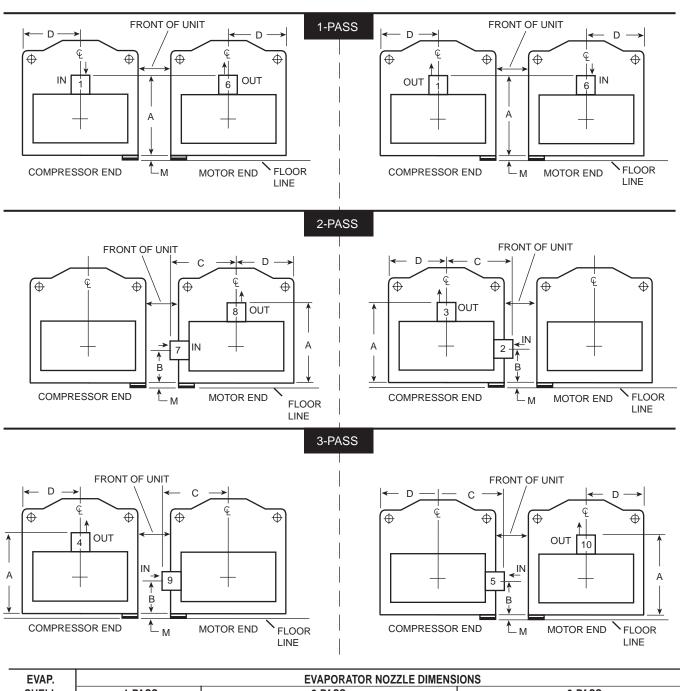
COND.	NOZZLE PIPE SIZE						
SHELL	NO	. OF PASS	ES				
CODE	1	2	3				
G	16"	14"	10"				
н	20"	16"	12"				
J	20"	16"	14"				
т	20"	16"	14"				
V	20"	18"	14"				

EVAPORATOR									
NIZ		-			NC	DZZLE DIME	NSIONS		
NO	NU. OF PASSES		1-PA	SS	2-PASS		3-PASS		
1	2	3	AA ²	FF	BB ²	EE	FP	BB ²	FF
20"	18"	14"	775	813	775	381	813	775	813
	1	1 2	NO. OF PASSES 1 2 3 20" 18" 14"	NO. OF PASSES 1-PA 1 2 3 AA ²	NO. OF PASSES 1-PASS 1 2 3 AA ² FF	NO. OF PASSES 1-PASS 1 2 3 AA ² FF BB ²	NO. OF PASSES 1-PASS 2-PASS 1 2 3 AA ² FF BB ² EE	NO. OF PASSES NOZZLE DIMENSIONS 1 2 3 AA ² FF BB ² EE FP	NOZZLE DIMENSIONS NO. OF PASSES 1-PASS 2-PASS 3-PA 1 2 3 AA ² FF BB ² EE FP BB ²

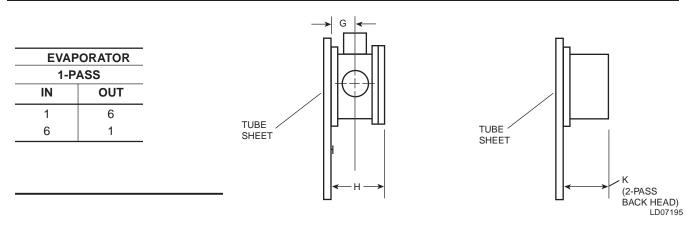

NOTES:

 Standard water nozzles are furnished as welding stub-outs with Victaulic grooves, allowing the option of welding, flanges, or use of Victaulic couplings. Factory-installed, class 150 (ANSI B16.5, round slip-on, forged carbon steel with 1.6 mm raised face), water flanged nozzles are optional (add 13 mm to nozzle length). Companion flanges, nuts, bolts, and gaskets are not furnished.

2. Add dimension "M" as shown on pg 38 for the appropriate isolator type.


3. One-, two- and three-pass nozzle arrangements are available only in pairs shown and for all shell codes. Any pair of evaporator nozzles may be used in combination with any pair of condenser nozzles.

4. Connected piping should allow for removal of compact water boxes for tube access and cleaning.


CONDENSER SHELL	NOZZ	LE PIPE S	SIZE	CONDENSER NOZZLE DIMENSIONS (mm)							
	I NO. OF PASSES			1-PASS 2-PASS					3-PASS		
CODE	1	2	3	CC ²	GG	BB ²	DD ²	GG	BB ²	DD ²	GG
Х	24"	18"	16"	1041	749	711	1372	749	711	1372	749

See Notes on page 57.

EVAPORATORS - MARINE WATER BOXES - J LOW STAGE COMPRESSOR UNITS

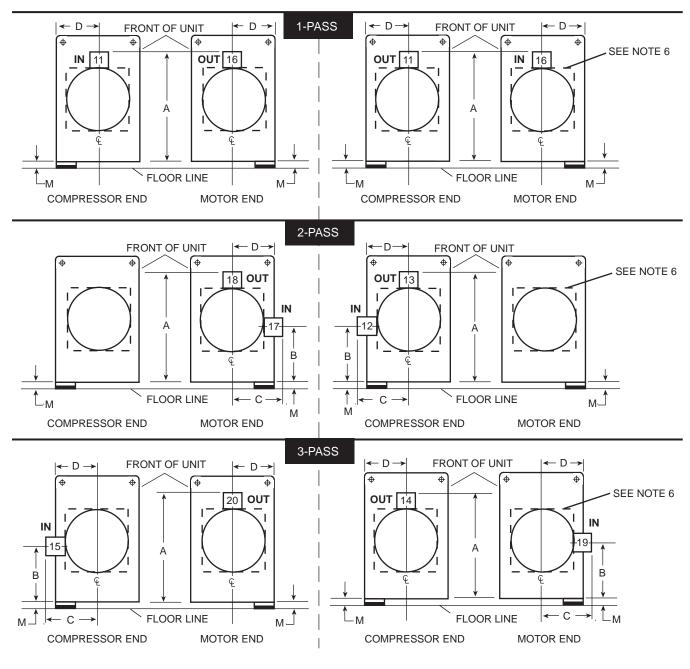
EVAP.	EVAPORATOR NOZZLE DIMENSIONS									
SHELL	1-F	PASS		2-PASS				3-P	ASS	
CODE	A ⁵	D	A ⁵	B⁵	C	D	A ⁵	B⁵	С	D
Х	1,365	813	1,365	679	965	813	1,365	629	962	813

EVAPORATOR				
2-PASS				
IN OUT				
2	3			
7	8			

EVAPORATOR NOZZLE DIMENSIONS – mm (1-PASS)				
Н				
864				

EVAPORATOR 3-PASS					
IN OUT					
5	10				
9	4				

EVAPORATOR SHELL	NOZZLE PIPE SIZE NO. OF PASSES					
CODE	1	2	3			
x	20"	18"	14"			


EVAPORATOR SHELL	EVAPORATOR NOZZLE DIMENSIONS – mm (2-PASS)					
CODE	G	Н	К			
Х	368	813	419			

EVAPORATOR SHELL CODE	EVAPORATOR NOZZLE				
	DIMENSIONS – mm (3- PASS)				
	G	Н			
Х	318	711			

ADDITIONAL OPERATING HEIGHT CLEARANCE TO FLOOR						
TYPE OF CHILLER MOUNTING	М					
NEOPRENE PAD ISOLATORS	44					
SPRING ISOLATORS 1" (25mm) DEFLECTION	25					
DIRECT MOUNT	19					

NOTES (see table on page 59):

- 1. All dimensions are approximate. Certified dimensions are available upon request.
- Standard water nozzles are Standard wall (9.5mm) pipe size, furnished as welding stub-outs with Victaulic grooves, allowing the option
 of welding, flanges, or use of Victaulic couplings. Factory-installed, class 150 (ANSI B16.5, round slip-on, forged carbon steel with 1.6
 mm raised face), water flanged nozzles are optional (add 13 mm to nozzle length). Companion flanges, nuts, bolts, and gaskets are
 not furnished.
- 3. One-, two-, and three-pass nozzle arrangements are available only in pairs shown and for all shell codes. Any pair of evaporator nozzles may be used in combination with any pair of condenser nozzles. Compact water boxes on one heat exchanger may be used with Marine Water Boxes on the other heat exchanger.
- 4. Water must enter the water box through the bottom connection to achieve rated performance.
- 5. Add dimension "M" as shown in above table for the appropriate isolator type.

CONDENSERS – MARINE WATER BOXES – J LOW STAGE COMPRESSOR UNITS

COND.	CONDENSER NOZZLE DIMENSIONS (mm)										
SHELL	1-P/	ASS	2-PASS				3-PASS				
CODE	A ⁵	D	A⁵	B⁵	С	D	A⁵	B⁵	С	D	
Х	1,956	749	1,956	749	864	749	1,956	675	864	749	
			1	1	ļ		1				

See Notes on page 62.

TUBE SHEET	TUBE SHEET K (2-PASS BACK HEAD)
---------------	--

LD07195

CONDENSER					
2-PASS					
IN	OUT				
12	13				
17	18				

CONDENSER 1-PASS

> **OUT** 16

> > 11

IN

11 16

CONDENSER SHELL CODE	DESIGN WORKING	COND. NOZZLE DIMENSIONS (1-PASS)			
	PRESSURE (kPa)	G	н		
x	1034	454	972		
^	2068	570	1229		

	CONDENSER 3-PASS		WORKING		COND. NOZZLE DIMENSIONS (2-PASS)			
IN	OUT	-	CODE	PRESSURE (PSIG)	G	н	к	
15	20		×	1034	359	794	297	
19	14	-	X	2068	437	962	333	

COND.	NOZ	NOZZLE PIPE SIZE					
SHELL CODE	NO. OF PASSES CO 1 2 3		CONDENSER		COND. NOZZLE DIMENSIONS (3-PASS		
Х	24"	18"	16"	SHELL CODE	WORKING PRESSURE (PSIG)	G	Н
				v	1034	346	756
				X	2068	405	899

NOTES (see Table on page 61):

1. All dimensions are approximate. Certified dimensions are available upon request.

- Standard water nozzles are Standard wall (9.5mm) pipe size, furnished as welding stub-outs with Victaulic grooves, allowing the option
 of welding, flanges, or use of Victaulic couplings. Factory-installed, class 150 (ANSI B16.5, round slip-on, forged carbon steel with 1.6
 mm raised face), water flanged nozzles are optional (add 13 mm to nozzle length). Companion flanges, nuts, bolts, and gaskets are
 not furnished.
- 3. One-, two-, and three-pass nozzle arrangements are available only in pairs shown and for all shell codes. Any pair of evaporator nozzles may be used in combination with any pair of condenser nozzles. Compact water boxes on one heat exchanger may be used with Marine Water Boxes on the other heat exchanger.
- 4. Condenser water must enter the water box through the bottom connection for proper operation of the sub-cooler to achieve rated performance.
- 5. Add dimension "M" as shown on pg 60 for the appropriate isolator type.

TABLE 1 - UNIT WEIGHTS LESS MOTORS AND INTERCOOLER

				30" O.D. IN1	ERCOOLER	र			
		SHIF	PPING	OPER	ATING	REFRIG	ERANT	LOADIN	IG PER
SH	ELLS	WE	IGHT	WEI	GHT	CHA	RGE	ISOLA	TOR
		(LBS)	(KG)	(LBS)	(KG)	(LBS)	(KG)	(LBS)	(KG)
	FBDB	32,115	14,567	36,740	16,665	1,650	748	9,185	4,16
F-D	FBDC	32,410	14,701	37,035	16,799	1,650	748	9,259	4,20
Γ-υ	FCDB	32,360	14,678	36,985	16,776	1,650	748	9,246	4,19
	FCDC	32,655	14,812	37,280	16,910	1,650	748	9,320	4,22
	FBEB	33,360	15,132	38,520	17,472	1,650	748	9,630	4,36
F-E	FBEC	33,585	15,234	38,745	17,574	1,650	748	9,686	4,39
• -	FCEB	33,605	15,243	38,765	17,584	1,650	748	9,691	4,39
	FCEC	33,830	15,345	38,990	17,686	1,650	748	9,748	4,42
	FBFB	34,820	15,794	40,575	18,405	1,805	819	10,144	4,60
F-F	FBFC	34,980	15,867	40,735	18,477	1,805	819	10,184	4,61
	FCFB	35,070	15,908	40,825	18,518	1,805	819	10,206	4,63
	FCFC	35,225	15,978	40,980	18,588	1,805	819	10,245	4,64
	GBDB	34,065	15,452	39,590	17,958	1,900	862	9,898	4,48
	GBDC	34,355	15,583	39,880	18,089	1,900	862	9,970	4,52
G-D	GCDB	34,410	15,608	39,935	18,114	1,900	862	9,984	4,52
-	GCDC	34,705	15,742	40,230	18,248	1,900	862	10,058	4,56
	GDDB	34,880	15,821	40,405	18,327	1,900	862	10,101	4,58
	GDDC	35,170	15,953	40,695	18,459	1,900	862	10,174	4,61
	GBEB	35,310	16,016	41,365	18,763	1,900	862	10,341	4,69
	GBEC	35,535	16,118	41,590	18,865	1,900	862	10,398	4,71
G-E	GCEB	35,655	16,173	41,710	18,919	1,900	862	10,428	4,73
	GCEC	35,880	16,275	41,935	19,021	1,900	862	10,484	4,75
	GDEB	36,125	16,386	42,180	19,133	1,900	862	10,545	4,78
	GDEC	36,350	16,488	42,405	19,235	1,900	862	10,601	4,80
	GBFB	36,770	16,679	43,265	19,625	1,900	862	10,816	4,90
	GBFC	36,925	16,749	43,420	19,695	1,900	862	10,855	4,92
G-F	GCFB GCFC	37,120	16,837	43,615	19,783	1,900	862	10,904	4,94
	GCFC	37,275 37,590	16,908 17,051	43,770 44,085	19,854 19,997	1,900 1,900	862 862	10,943 11,021	4,96
	GDFB	37,590	17,031	44,085	20,067	1,900	862	11,021	5,01
	HBDB	35,850	16,261	42,815	19,421	2,825	1,281	10,704	4,85
	HBDC	36,145	16,395	43,110	19,554	2,825	1,281	10,778	4,88
H-D	HCDB	36,450	16,533	43,415	19,693	2,825	1,281	10,854	4,92
	HCDC	36,745	16,667	43,710	19,827	2,825	1,281	10,928	4,95
	HBEB	37,095	16,826	44,590	20,226	2,825	1,281	11,148	5,05
	HBEC	37,320	16,928	44,815	20,328	2,825	1,281	11,204	5,08
H-E	HCEB	37,695	17,098	45,190	20,498	2,825	1,281	11,298	5,12
	HCEC	37,920	17,200	45,415	20,600	2,825	1,281	11,354	5,15
	HBFB	38,560	17,491	46,500	21,092	2,825	1,281	11,625	5,27
	HBFC	38,715	17,561	46,655	21,162	2,825	1,281	11,664	5,29
H-F	HCFB	39,160	17,763	47,100	21,364	2,825	1,281	11,775	5,34
	HCFC	39,315	17,833	47,255	21,435	2,825	1,281	11,814	5,35

			SSOR OPTI			· /			
	CO	MPRESSOR			-		8) HIGH ST	AGE	
		SHIP	PING	-			BERANT	LOADIN	G PER
сн	ELLS		IGHT		GHT			ISOLA	
511		(LBS)	(KG)	(LBS)	(KG)	(LBS)	(KG)	(LBS)	(KG)
	GFFB	36,250	16,443	44,425	20,151	2,415	1,095	11,106	5,038
	GFFC	36,405	16,513	44,580	20,221	2,415	1,095	11,145	5,055
G-F	GHFB	36,765	16,676	44,940	20,384	2,415	1,095	11,235	5,096
	GHFC	36,920	16,747	45,095	20,455	2,415	1,095	11,274	5,114
	GFGB	38,325	17,384	46,250	20,979	2,415	1,095	11,563	5,245
	GFGC	38,730	17,568	46,655	21,162	2,415	1,095	11,664	5,291
G-G	GHGB	38,840	17,618	46,765	21,212	2,415	1,095	11,691	5,303
	GHGC	39,240	17,799	47,165	21,394	2,415	1,095	11,791	5,348
	GFJB	41,795	18,958	52,215	23,684	2,415	1,095	13,054	5,921
	GFJC	42,285	19,180	52,705	23,907	2,415	1,095	13,176	5,977
G-J	GHJB	42,305	19,189	52,725	23,916	2,415	1,095	13,181	5,979
	GHJC	42,800	19,414	53,220	24,140	2,415	1,095	13,305	6,035
	HFFB	38,315	17,379	46,405	21,049	2,625	1,191	11,601	5,262
	HFFC	38,470	17,450	46,560	21,119	2,625	1,191	11,640	5,280
H-F	HHFB	38,870	17,631	46,960	21,301	2,625	1,191	11,740	5,325
	HHFC	39,025	17,701	47,115	21,371	2,625	1,191	11,779	5,343
ЦС	HFGB	40,140	18,207	48,975	22,215	2,625	1,191	12,244	5,554
	HFGC	40,540	18,389	49,375	22,396	2,625	1,191	12,344	5,599
H-G	HHGB	40,695	18,459	49,530	22,466	2,625	1,191	12,383	5,617
	HHGC	41,095	18,640	49,930	22,648	2,625	1,191	12,483	5,662
	HFJB	43,855	19,892	55,385	25,122	2,825	1,281	13,846	6,281
	HFJC	44,350	20,117	55,880	25,347	2,825	1,281	13,970	6,337
H-J	HHJB	44,410	20,144	55,940	25,374	2,825	1,281	13,985	6,344
	HHJC	44,905	20,369	56,435	25,599	2,825	1,281	14,109	6,400
	JFFB	41,890	19,001	51,795	23,494	3,495	1,585	12,949	5,874
	JFFC	42,045	19,071	51,950	23,564	3,495	1,585	12,988	5,891
	JGFB	42,280	19,178	52,185	23,671	3,495	1,585	13,046	5,918
J-F	JGFC	42,435	19,248	52,340	23,741	3,495	1,585	13,085	5,935
	JHFB	42,665	19,353	52,570	23,845	3,495	1,585	13,143	5,961
	JHFC	42,820	19,423	52,725	23,916	3,495	1,585	13,181	5,979
	JFGB	43,965	19,942	54,615	24,773	3,495	1,585	13,654	6,193
	JFGC	44,365	20,124	55,015	24,954	3,495	1,585	13,754	6,239
	JGGB	44,355	20,119	55,005	24,950	3,495	1,585	13,751	6,238
J-G	JGGC	44,755	20,301	55,405	25,131	3,495	1,585	13,851	6,283
	JHGB	44,740	20,294	55,390	25,125	3,495	1,585	13,848	6,281
	JHGC	45,140	20,475	55,790	25,306	3,495	1,585	13,948	6,327
	JFJB	47,430	21,514	60,575	27,476	3,495	1,585	15,144	6,869
	JFJC	47,925	21,738	61,070	27,701	3,495	1,585	15,268	6,925
L.I.	JGJB	47,820	21,691	60,965	27,653	3,495	1,585	15,241	6,913
J-J	JGJC	48,315	21,915	61,460	27,878	3,495	1,585	15,365	6,969
	JHJB	48,205	21,865	61,350	27,828	3,495	1,585	15,338	6,957
	JHJC	48,695	22,088	61,840	28,050	3,495	1,585	15,460	7,013

SHE H-F H-G	HFFB HFFC	WEI (LBS)	PING GHT	OPER			BERANT	LOADIN	
H-F	HFFB HFFC	(LBS)	GHT			CHARGE			
	HFFC			WE	IGHT	CHA	RGE	ISOLA	TOR
	H-F HHFB HHFC		(KG)	(LBS)	(KG)	(LBS)	(KG)	(LBS)	(KG)
		40,195	18,232	48,285	21,902	2,625	1,191	12,071	5,475
		40,350	18,303	48,440	21,972	2,625	1,191	12,110	5,493
H-G	HHFB	40,765	18,491	48,855	22,160	2,625	1,191	12,214	5,540
H-G	HHFC	40,920	18,561	49,010	22,231	2,625	1,191	12,253	5,558
H-G	HFGB	42,020	19,060	50,855	23,067	2,625	1,191	12,714	5,767
	HFGC	42,425	19,244	51,260	23,251	2,625	1,191	12,815	5,813
	HHGB	42,590	19,319	51,425	23,326	2,625	1,191	12,856	5,832
	HHGC	42,995	19,502	51,830	23,510	2,625	1,191	12,958	5,877
	HFHB	43,820	19,876	54,185	24,578	2,825	1,281	13,546	6,145
н-н	HFHC	44,110	20,008	54,475	24,710	2,825	1,281	13,619	6,177
	НННВ	44,390	20,135	54,755	24,837	2,825	1,281	13,689	6,209
	HHHC	44,680	20,267	55,045	24,968	2,825	1,281	13,761	6,242
	JFFB	43,740	19,840	53,460	24,249	3,310	1,501	13,365	6,062
	JFFC	43,895	19,910	53,615	24,319	3,310	1,501	13,404	6,080
J-F	JGFB	44,130	20,017	53,850	24,426	3,310	1,501	13,463	6,107
• •	JGFC	44,285	20,087	54,005	24,496	3,310	1,501	13,501	6,124
	JHFB	44,515	20,192	54,235	24,601	3,310	1,501	13,559	6,150
	JHFC	44,670	20,262	54,390	24,671	3,310	1,501	13,598	6,168
J-G	JFGB	45,815	20,781	56,280	25,528	3,310	1,501	14,070	6,382
	JFGC	46,220	20,965	56,685	25,712	3,310	1,501	14,171	6,428
	JGGB	46,205	20,958	56,670	25,705	3,310	1,501	14,168	6,426
	JGGC	46,605	21,140	57,070	25,887	3,310	1,501	14,268	6,472
	JHGB	46,590	21,133	57,055	25,880	3,310	1,501	14,264	6,470
	JHGC	46,990	21,314	57,455	26,061	3,310	1,501	14,364	6,515
	JFHB	47,365	21,484	59,160	26,835	3,310	1,501	14,790	6,709
	JFHC	47,655	21,616	59,450	26,966	3,310	1,501	14,863	6,742
J-H	JGHB	47,755	21,661	59,550	27,011	3,310	1,501	14,888	6,753
	JGHC	48,040	21,791	59,835	27,141	3,310	1,501	14,959	6,785
	JHHB	48,140	21,836	59,935	27,186	3,310	1,501	14,984	6,797
	JHHC	48,425	21,965	60,220	27,315	3,310	1,501	15,055	6,829
	TFTB	52,410	23,773	67,055	30,416	3,995	1,812	16,764	7,604
	TFTC	52,975	24,029	67,620	30,672	3,995	1,812	16,905	7,668
T-T	TGTB	52,860	23,977	67,505	30,620	3,995	1,812	16,876	7,655
	TGTC	53,425	24,233	68,070	30,876	3,995	1,812	17,018	7,719
T-V	THTB THTC	53,310	24,181	67,955	30,824 31,078	3,995	1,812	16,989	7,706
	TFVB	53,870 55,610	24,435 25,224	68,515 72,070	31,078	3,995 4,290	1,812 1,946	17,129 18,018	7,770
	TFVB	55,985	25,224 25,394	72,070	32,890	4,290	1,946	18,018	8,215
	TGVB	56,055	25,394	72,445	32,801	4,290	1,946	18,129	8,223
	TGVB	56,435	25,599	72,895	33,065	4,290	1,946	18,129	8,266
	THVB	56,500	25,628	72,960	33,003	4,290	1,946	18,240	8,200
	THVC	56,880	25,800	72,900	33,267	4,290	1,946	18,335	8,317

TABLE 3 – UNIT WEIGHTS LESS MOTORS AND INTERCOOLER

COMPRESSOR OPTION - J3 LOW STAGE / H3 (H7) OR J1 (U1) HIGH STAGE 36" O.D. INTERCOOLER														
	36" O.D. INTERCOOLER SHIPPING OPERATING REFRIGERANT LOADING PER													
		SHIP	PING	OPEF	RATING	REFRIC	GERANT	LOADIN	IG PER					
SH	ELLS	WEI	GHT	WE	IGHT	CHA	RGE	ISOLATOR						
		(LBS)	(KG)	(LBS)	(KG)	(LBS)	(KG)	(LBS)	(KG)					
	VFTB	54,130	24,553	69,280	31,425	3,820	1,733	17,320	7,856					
V- Т	VFTC	54,700	24,812	69,850	31,683	3,820	1,733	17,463	7,921					
V-1	VHTB	54,760	24,839	69,910	31,711	3,820	1,733	17,478	7,928					
	VHTC	55,330	25,097	70,480	31,969	3,820	1,733	17,620	7,992					
	VFVB			74,330	33,716	4,150	1,882	18,583	8,429					
V-V	VFVC	57,710	26,177	74,710	33,888	4,150	1,882	18,678	8,472					
v-v	VHVB	57,960 26,290		74,960	34,001	4,150	1,882	18,740	8,500					
	VHVC	58,340	26,463	75,340	34,174	4,150	1,882	18,835	8,543					
	WFTB	57,200	25,946	72,420	32,849	4,460	2,023	18,105	8,212					
w-т	WFTC	57,765	26,202	72,985	33,105	4,460	2,023	18,246	8,276					
VV-1	WHTB	58,635	26,596	73,855	33,500	4,460	2,023	18,464	8,375					
	WHTC	59,205	26,855	74,425	33,759	4,460	2,023	18,606	8,440					
	WFVB	60,145	27,281	76,885	34,875	4,460	2,023	19,221	8,719					
W-V	WFVC	60,525	27,454	77,265	35,047	4,460	2,023	19,316	8,762					
vv-v	WHVB	61,585	27,935	78,325	35,528	4,460	2,023	19,581	8,882					
	WHVC	61,965	28,107	78,705	35,700	4,460	2,023	19,676	8,925					

TABLE 3 - UNIT WEIGHTS LESS MOTORS AND INTERCOOLER (continued)

				J4 LOW ST/ 42" O.D. INT			,	~-	
		SHIP	PING	OPER		REFRIG	ERANT	LOADIN	G PER
SHE	ELLS	WEI	GHT	WEI	GHT	СНА	RGE	ISOLA	TOR
		(LBS)	(KG)	(LBS)	(KG)	(LBS)	(KG)	(LBS)	(KG)
	JFJB	49,310	22,367	62,455	28,329	3,495	1,585	15,614	7,082
	JFJC	49,800	22,589	62,945	28,551	3,495	1,585	15,736	7,138
J-J	JGJB	49,700	22,544	62,845	28,506	3,495	1,585	15,711	7,127
J-J	JGJC	50,190	22,766	63,335	28,728	3,495	1,585	15,834	7,182
	JHJB	50,085	22,718	63,230	28,681	3,495	1,585	15,808	7,170
	JHJC	50,575	22,940	63,720	28,903	3,495	1,585	15,930	7,226
	TFTB	52,410	23,773	67,055	30,416	3,995	1,812	16,764	7,604
	TFTC	52,975	24,029	67,620	30,672	3,995	1,812	16,905	7,668
т-т	TGTB	52,860	23,977	67,505	30,620	3,995	1,812	16,876	7,655
1-1	TGTC	53,425	24,233	68,070	30,876	3,995	1,812	17,018	7,719
	THTB	53,310	24,181	67,955	30,824	3,995	1,812	16,989	7,706
	ТНТС	53,870	24,435	68,515	31,078	3,995	1,812	17,129	7,770
	TFVB	55,610	25,224	72,070	32,690	4,290	1,946	18,018	8,173
	TFVC	55,985	25,394	72,445	32,861	4,290	1,946	18,111	8,215
τv	TGVB	56,055	25,426	72,515	32,892	4,290	1,946	18,129	8,223
I-V	TGVC	56,435	25,599	72,895	33,065	4,290	1,946	18,224	8,266
т-v	THVB	56,500	25,628	72,960	33,094	4,290	1,946	18,240	8,274
	THVC	56,880	25,800	73,340	33,267	4,290	1,946	18,335	8,317
	VFTB	54,130	24,553	69,280	31,425	3,820	1,733	17,320	7,856
V-т -	VFTC	54,700	24,812	69,850	31,683	3,820	1,733	17,463	7,921
	VHTB	54,760	24,839	69,910	31,711	3,820	1,733	17,478	7,928
	VHTC	55,330	25,097	70,480	31,969	3,820	1,733	17,620	7,992
	VFVB	57,330	26,005	74,330	33,716	4,150	1,882	18,583	8,429
V-V	VFVC	57,710	26,177	74,710	33,888	4,150	1,882	18,678	8,472
V-V	VHVB	57,960	26,290	74,960	34,001	4,150	1,882	18,740	8,500
	VHVC	58,340	26,463	75,340	34,174	4,150	1,882	18,835	8,543
	WFTB	57,200	25,946	74,855	33,954	4,460	2,023	18,714	8,488
w-т	WFTC	57,765	26,202	75,420	34,210	4,460	2,023	18,855	8,553
44-1	WHTB	58,635	26,596	76,290	34,605	4,460	2,023	19,073	8,651
	WHTC	59,205	26,855	76,860	34,863	4,460	2,023	19,215	8,716
	WFVB	60,145	27,281	76,885	34,875	4,460	2,023	19,221	8,719
W-V	WFVC	60,525	27,454	77,265	35,047	4,460	2,023	19,316	8,762
VV-V	WHVB	61,585	27,935	78,325	35,528	4,460	2,023	19,581	8,882
	WHVC	61,965	28,107	78,705	35,700	4,460	2,023	19,676	8,925

TABLE 4 – UNIT WEIGHTS LESS MOTORS AND INTERCOOLER

		COMPRESS		COMPRESSOR OPTION - J5 LOW STAGE / J2 (U2) OR J3 HIGH STAGE													
	42" O.D. INTERCOOLER																
SHE	SHIPPINGOPERATINGREFRIGERANTLOADING PERSHELLSWEIGHTWEIGHTCHARGEISOLATOR																
		(LBS)	(KG)	(LBS)	(KG)	(LBS)	(KG)	(LBS)	(KG)								
	XFXA	69,505	31,527	93,200	42,275	6,001	2,722	23,300	10,569								
	XFXB	69,510	31,529	93,205	42,277	6,001	2,722	23,301	10,569								
X-X	XFXC	69,515	31,532	93,210	42,279	6,001	2,722	23,303	10,570								
~~~	XHXA	69,525	31,536	93,220	42,284	6,001	2,722	23,305	10,571								
	XHXB	69,530	31,538	93,225	42,286	6,001	2,722	23,306	10,572								
	XHXC	69,535	31,541	93,230	42,288	6,001	2,722	23,308	10,572								

# **TABLE 5** – UNIT WEIGHTS LESS MOTORS AND INTERCOOLER

### TABLE 6 - INTERCOOLER WEIGHTS

(INCLUDING PIPING BETWEEN UNIT AND INTERCOOLER)												
SHIPPING OPERATING REFRIGERANT LOADING F												
INTERCOOLER O.D.	WEI	GHT	WEI	GHT	CHA	RGE	ISOLATOR					
	(LBS)	(KG)	(LBS)	(KG)	(LBS)	(KG)	(LBS)	(KG)				
30"	3,000	1,361	3,500	1,588	350	159	1,167	529				
36"	4,200 1,905		4,800	2,177	446	202	1,600	726				
42"	5,300	2,404	6,000	2,722	600	272	2,000	907				

MOTOR	CODE		В	с	D	Е	F	G	н	WEIGHT	WEIGHT
60 HZ	50 HZ	A	D	C	U	E	F	G	п	(LBS.)	(KGS.)
СН	-	31-1/4"	10-7/8"	10-7/8"	10-1/4"	17-3/4"	20"	20"	8"	940	427
CJ	5CE	31-1/4"	10-7/8"	10-7/8"	10-1/4"	17-3/4"	20"	20"	8"	940	427
СК	5CF	36"	11"	11"	8-1/4"	20"	20"	20"	8"	1,440	653
CL	5CG	36"	11"	11"	8-1/4"	20"	20"	20"	8"	1,440	653
СМ	5CH	39-5/8"	11"	11"	8-1/4"	21-3/4"	20"	20"	8"	1,700	771
CN	5C1	39-5/8"	11"	11"	8-1/4"	21-3/4"	20"	20"	8"	1,700	771
СР	5CJ	39-5/8"	11"	11"	8-1/4"	21-3/4"	20"	20"	8"	1,700	771
CR	5CK	39-5/8"	11"	11"	8-1/4"	21-3/4"	20"	20"	8"	1,700	771
CS	5CL	40"	16-1/4"	10-3/4"	11-1/2"	24-1/4"	20"	20"	8"	2,635	1,195
СТ	5CM	40"	16-1/4"	10-3/4"	11-1/2"	24-1/4"	20"	20"	8"	2,635	1,195
CU	5CN	40"	16-1/4"	10-3/4"	11-1/2"	24-1/4"	20"	20"	8"	2,635	1,195
CV	5CO	40"	16-1/4"	10-3/4"	11-1/2"	24-1/4"	20"	20"	8"	2,635	1,195
CW	5CP	46-1/8"	19-1/2"	12-1/2"	14-3/4"	24-3/4"	20"	24"	16"	2,930	1,329
СХ	5CQ	46-1/8"	19-1/2"	12-1/2"	14-3/4"	24-3/4"	20"	24"	16"	2,930	1,329
CY	5CR	52-1/8"	19-1/2"	12-1/2"	14-3/4"	27-3/4"	20"	24"	16"	2,930	1,329
CZ	5CS	52-1/8"	19-1/2"	12-1/2"	14-3/4"	27-3/4"	20"	24"	16"	2,930	1,329
CA	5CT	57-1/4"	22-1/4"	20"	40-1/4"	32"	20"	24"	17"	5,750	2,608
СВ	5CU	57-1/4"	22-1/4"	20"	40-1/4"	32"	20"	24"	17"	5,750	2,608
_	5CV	57-1/4"	22-1/4"	20"	40-1/4"	32"	20"	24"	17"	5,750	2,608
DA	5CW	65-1/4"	22-1/4"	20"	40-1/4"	36"	20"	24"	17"	6,800	3,084
DB	5CX	65-1/4"	22-1/4"	20"	40-1/4"	36"	20"	24"	17"	6,800	3,084
DC	5DA	65-1/4"	22-1/4"	20"	40-1/4"	36"	20"	24"	17"	7,300	3,311
	5DB	65-1/2"	22-1/4"	20"	40-1/4"	36-1/4"	20"	24"	17"	7,300	3,311

MOTOF	RCODE	•	P	с	D	E	F	•		WEIGHT	WEIGHT
60 HZ	50 HZ	Α	В		U	E	- F	G	н	(LBS.)	(KGS.)
СН	-	41-1/2"	20-7/8"	20-7/8"	30-3/8"	22-3/4"	20"	20"	8"	2,670	1,211
CJ	5CE	41-1/2"	20-7/8"	20-7/8"	30-3/8"	22-3/4"	20"	20"	8"	2,670	1,211
СК	5CF	46"	20-7/8"	20-7/8"	30-3/8"	24-3/4"	20"	20"	8"	3,100	1,406
CL	5CG	46"	20-7/8"	20-7/8"	30-3/8"	24-3/4"	20"	20"	8"	3,100	1,406
СМ	5CH	46"	20-7/8"	20-7/8"	30-3/8"	24-3/4"	20"	20"	8"	3,100	1,406
CN	5C1	46"	20-7/8"	20-7/8"	30-3/8"	24-3/4"	20"	20"	8"	3,100	1,406
СР	5CJ	51-7/8"	20-7/8"	20-7/8"	30-3/8"	27-3/4"	20"	20"	8"	3,700	1,678
CR	5CK	51-7/8"	20-7/8"	20-7/8"	30-3/8"	27-3/4"	20"	20"	8"	3,700	1,678
CS	5CL	51-7/8"	20-7/8"	20-7/8"	30-3/8"	27-3/4"	20"	20"	8"	3,700	1,678
СТ	5CM	51-7/8"	20-7/8"	20-7/8"	30-3/8"	27-3/4"	20"	20"	8"	3,700	1,678
CU	5CN	51-7/8"	20-7/8"	20-7/8"	30-3/8"	27-3/4"	20"	20"	8"	3,700	1,678
CV	5CO	57"	19"	14"	35-5/8"	32-1/4"	20"	20"	8"	4,500	2,041
CW	5CP	57"	19"	14"	35-5/8"	32-1/4"	20"	20"	8"	4,500	2,041
СХ	5CQ	57"	19"	14"	35-5/8"	32-1/4"	20"	20"	8"	4,500	2,041
CY	5CR	57"	19"	14"	35-5/8"	32-1/4"	20"	24"	8"	4,500	2,041
CZ	5CS	57"	19"	14"	35-5/8"	32-1/4"	20"	24"	8"	4,500	2,041
CA	5CT	57-1/4"	22-1/4"	20"	40-1/4"	32"	20"	24"	17"	5,800	2,630
СВ	5CU	57-1/4"	22-1/4"	20"	40-1/4"	32"	20"	24"	17"	5,800	2,630
_	5CV	57-1/4"	22-1/4"	20"	40-1/4"	32"	20"	24"	17"	5,800	2,630
DA	5CW	65-1/4"	22-1/4"	20"	40-1/4"	36"	20"	24"	17"	6,800	3,084
DB	5CX	65-1/4"	22-1/4"	20"	40-1/4"	36"	20"	24"	17"	6,800	3,084
DC	5DA	65-1/4"	22-1/4"	20"	40-1/4"	36"	20"	24"	17"	7,050	3,198
-	5DB	65-1/2"	22-1/4"	20"	40-1/4"	36-1/4"	20"	24"	17"	7,300	3,311
DD	5DC	65-1/2"	22-1/4"	20"	40-1/4"	36-1/4"	20"	24"	17"	7,300	3,311
DE	5DD	65-1/2"	22-1/4"	20"	40-1/4"	36-1/4"	20"	24"	17"	7,300	3,311
DF	5DE	65-1/2"	22-1/4"	20"	40-1/4"	36-1/4"	20"	24"	17"	7,500	3,402
DH	5DF	65-1/2"	22-1/4"	20"	40-1/4"	36-1/4"	20"	24"	17"	7,500	3,402
DJ	5DG	65-1/2"	22-1/4"	20"	40-1/4"	36-1/4"	20"	24"	17"	7,900	3,583
	5DH	65-1/2"	22-1/4"	20"	40-1/4"	36-1/4"	20"	24"	17"	7,900	3,583
_	50J		CON	TACT FAC	FORY FOR	DIMENSION	S AND \	WEIGH	TS		

TABLE 7A - TYPICAL DIMENSIONS AND WEIGHTS - STANDARD MOTORS (HIGH VOLTAGE)

# Weights (continued)

### TABLE 8 - MARINE WATER BOX WEIGHTS (LBS.) - H Compressor Units

COOLER		PING WEIG Ease – I			ting wei Ase – Li		COND.		PPING WEI Rease -			ATING WE Rease -	
CODE	1-PASS	2-PASS	3-PASS	1-PASS	2-PASS	3-PASS	CODE	1-PASS	2-PASS	3-PASS	1-PASS	2-PASS	3-PASS
F	2,296	1,122	2,129	2,568	2,568 1,394 2,400			1,800	798	1,620	1,898	893	1,710
G	2,838	1,238	2,339	3,206	1,606	2,707	Е	2,572	1,167	2,340	2,670	1,261	2,510
Н	3,468	1,575	2,916	3,945	2,052	3,393	F	1,046	752	900	1,159	865	970
						G	1,382	965	1,100	1,576	1,159	1380	

### WEIGHTS (To be added to Standard Unit weights shown above).

**TABLE 9** – MARINE WATER BOX WEIGHTS (LBS.) – J Compressor Units WEIGHTS (To be added to Standard Unit weights shown above).

COOLER		PING WEIG Ease – I				COND.		PPING WEI Rease –		OPERATING WEIGHT INCREASE – LBS.			
CODE	1-PASS	2-PASS	3-PASS	1-PASS	2-PASS	3-PASS	CODE	1-PASS	2-PASS	3-PASS	1-PASS	2-PASS	3-PASS
G	2,415	975	1,915	2,690	1,225	2,200	G	2,380	1,140	1,670	2,500	1,250	1,775
Н	2,775	1,514	2,800	3,140	1,775	3,200	Н	2,495	1,210	2,290	2,650	1,340	2,610
J, T	3,576	1,715	3,400	4,050	2,100	3,900	J, T	2,990	1,485	2,895	3,390	1,700	3,230
V	3,760	1,820	3,460	4,450	2,490	4,000	V	3,930	1,900	3,815	4,440	2,300	4,670
W	4,650	2,455	4,330	5,460	3,270	5,120							

EVAP. CODE	SHIPPING WEIGHT INCREASE – LBS.			OPERATING WEIGHT INCREASE – LBS.			COND.	Shipping Weight Increase – LBS.			OPERATING INCREASE – LBS.		
	1-PASS	2-PASS	3-PASS	1-PASS	2-PASS	3-PASS	CODE	1-PASS	2-PASS	3-PASS	1-PASS	2-PASS	3-PASS
Х	4,650	2,455	4,330	5,460	3,270	5,120	Х	5,094	2,276	4,522	9,809	4,021	7,778

# TABLE 11 – MARINE WATER BOX WEIGHTS (KG) – H Compressor Units

WEIGHTS (To be added to Standard Unit weights shown above).

COOLER	I INCREASE – KG I INCREASE – KG					COND.		PPING WEI Rease -		OPERATING WEIGHT INCREASE – KG			
CODE	1-PASS	2-PASS	3-PASS	1-PASS 2-PASS 3-PASS			CODE	1-PASS	2-PASS	3-PASS	1-PASS	2-PASS	3-PASS
F	1,041	509	966	1,165	1,165 632 1,089		D	816	362	735	861	405	776
G	1,287	562	1,061	1,454	728	1,228	Е	1,167	529	1,061	1,211	572	1,139
Н	1,573	714	1,323	1,789	931	1,539	F	474	341	408	526	392	440
							G	627	438	499	715	526	626

# **TABLE 12** – MARINE WATER BOX WEIGHTS (KG) – J Compressor Units **WEIGHTS (To be added to Standard Unit weights shown above).**

COOLER	SHIPPING WEIGHTOPERATING WEIGHTINCREASE - KGINCREASE - KG		COND.	Shipping Weight Increase – Kg			OPERATING WEIGHT INCREASE – KG						
CODE	1-PASS	2-PASS	3-PASS	1-PASS	2-PASS	3-PASS	CODE	1-PASS	2-PASS	3-PASS	1-PASS	2-PASS	3-PASS
G	1,095	442	869	1,220	556	998	G	1,080	517	758	1,134	567	805
Н	1,249	687	1,270	1,424	805	1,452	Н	1,132	549	1,039	1,202	608	1,184
J, T	1,622	778	1,542	1,837	953	1,769	J, T	1,356	674	1,313	1,538	771	1,465
V	1,706	826	1,569	2,019	1,129	1,814	V	1,783	862	1,730	2,014	1,043	2,118
W	2,109	1,114	1,964	2,477	1,483	2,322							

	SHIPPING WEIGHT			OPER	ATING W	EIGHT		SHIP	PING WE	IGHT	OPERATING WEIGHT		
EVAP. CODE	INCREASE – KG		INCREASE – KG		COND.	INC	INCREASE – KG			INCREASE – KG			
CODL	1-PASS	2-PASS	3-PASS	1-PASS	2-PASS	3-PASS		1-PASS	2-PASS	3-PASS	1-PASS	2-PASS	3-PASS
X-X	2,109	1,114	1,964	2,477	1,483	2,322	X-X	2,311	1,032	2,051	4,449	1,824	3,528

#### GENERAL

Furnish and install where indicated on the drawings____YORK MAXE model CYK Compound Centrifugal Compressor Liquid Chilling Unit(s). Each unit shall produce a capacity of _____ tons, cooling _____ GPM of _____ from _____ °F to _____ °F when supplied with GPM of condenser water at _____ °F. Total power input (two motors) shall not exceed ____ kW. The evaporator shall be selected for _____ fouling factor and a maximum liquid pressure drop of _____ ft. Water side shall be designed for 150 PSIG working pressure. The condenser shall be selected for _____ fouling factor and maximum liquid pressure drop of _____ ft. Waterside shall be designed for 150 PSIG working pressure. Power shall be supplied to the compressor drive motors at volts - 3-phase - (60)(50) Hertz. Auxiliary power to the oil pump motors and controls shall be supplied at_ volts - 3-phase - (60)(50) Hertz

(or)

Furnish and install where indicated on the drawings ____YORK MAXE model CYK Dual Centrifugal Compressor Liquid Chilling Unit(s). Each unit shall produce a capacity of _____ kW, cooling _____ L/S of _____ from _____ °C to _____ °C when supplied with _____ L/S of condenser water at _____ °C. Total power input (two motors) shall not exceed _____ kW. The evaporator shall be selected for _____ m^{2°}C/W fouling factor and maximum liquid pressure drop of _____ kPa. Waterside shall be designed for 10.3 barg working pressure. The condenser shall be selected for _____ m^{2°}C/W fouling factor and maximum liquid pressure drop of _____ kPa. Waterside shall be designed for 10.3 barg working pressure.

Power shall be supplied to the compressor drive motors at _____ volts – 3-phase – (60)(50) Hertz. Auxiliary power to the oil pump motors and controls shall be supplied at ____ volts - 3-phase – (60)(50) Hertz.

Each unit shall be completely factory-packaged including evaporator, condenser, sub-cooler, compressors, Intercooler, open motors, lubrication system, Control Center, and all interconnecting unit piping and wiring. The intercooler may be disassembled for shipment. The chiller shall be painted prior to shipment. The initial charge of oil and refrigerant shall be supplied, shipped in containers and cylinders for field installation or factory charged in the chiller when possible.

#### COMPRESSORS

Two centrifugal compressors shall be provided, operating in series and utilizing a common refrigerant circuit on the chiller. An electrically operated tight closing but-

Each compressor shall be a single-stage centrifugal type, powered by an open-drive electric motor. The housing shall be fully accessible with vertical circular joints, with the complete operating assembly removable from the compressor and scroll housing. Compressor castings on the low stage shall be designed for a minimum 235 PSIG working pressure and hydrostatically pressure tested at a minimum of 352 PSIG. The high stage shall be designed for 235 PSIG, 300 PSIG or 350 PSIG as applicable, and hydrostatically pressure tested at a minimum 352 PSIG, 450 PSIG and 525 PSIG as applicable. The rotor assembly shall consist of a heat-treated alloy steel drive shaft and impeller shaft with a cast aluminum, fully shrouded impeller. The impeller shall be designed for balanced thrust, dynamically balanced and over-speed tested for smooth, vibration-free operation. Insert-type journal and thrust bearings shall be fabricated of aluminum alloy, precision bored and axially grooved.

Internal single helical gears with crowned teeth shall be designed so that more than one tooth is in contact at all times to provide even load distribution and quiet operation. Each gear shall be individually mounted in its own journal and thrust bearings to isolate it from impeller and motor forces. Shaft seal shall be provided in double bellows, double-seal, cartridge type. A gravity-fed oil reservoir shall be built into the top of the compressor to provide lubrication during coast-down in the event of a power failure.

Capacity control shall be achieved by use of pre-rotation vanes to provide fully modulating control from full load to minimum load. Control shall automatically compensate for adverse operating conditions, such as fouled tubes, and adjust to prior operation after correction of these conditions. The unit shall be capable of continuous, reliable operation with low ECWT at all load conditions as outlined on the equipment schedule. An external electric actuator shall automatically control pre-rotation vane position for each compressor.

#### LUBRICATION SYSTEM

Lubrication oil shall be force-fed to all compressor bearings, gears, and rotating surfaces by variable speed oil pumps mounted in individual oil reservoirs. Each oil pump shall vary oil flow to its compressor based on operating and stand-by conditions, ensuring adequate lubrication at all times. The oil pump shall operate prior to start-up, during compressor operation and during coast-down.

# **Guide Specifications** (continued)

Dual oil reservoirs, separate from the compressors, shall contain the 2 HP submersible oil pumps and 1500 watt immersion-type oil heaters for each compressor. The oil heaters shall be thermostatically controlled to remove refrigerant from the oil. The oil reservoirs shall be designed and stamped in accordance with ASME or applicable pressure vessel code. A non-code reservoir is not acceptable.

Water-cooled oil coolers shall be provided after each oil pump, with factory installed water piping terminating at the end of the condenser tube-sheet. A thermostatically controlled bypass valve shall maintain the required oil temperature supply from each oil cooler to its compressor.

Oil shall be filtered by externally mounted, 1/2 micron, replaceable cartridge oil filters, equipped with service valves. An automatic oil return system shall recover any oil that may have migrated to the evaporator. Oil piping shall be completely factory installed. An automatic oil return system to recover any oil that may have migrated to the evaporator shall be provided. Oil piping shall be completely factory installed and tested.

### MOTOR DRIVELINE

Each compressor motor shall be an open drip-proof, squirrel cage, induction type operating at 3570 rpm (2975 rpm for 50 Hz operation).

Each open motor shall be provided with a D-flange, bolted to a cast iron adaptor mounted on the compressor to allow the motor to be rigidly coupled to the compressor to provide factory alignment of motor and compressor shafts.

Each motor drive shaft shall be directly connected to its compressor shaft with a flexible disc coupling. The coupling shall have all metal construction with no wearing parts to assure long life, and no lubrication requirements to provide low maintenance. For units utilizing remote electromechanical starters, a large steel terminal box with gasketed front access cover shall be provided for field-connected conduit.

### EVAPORATOR

Evaporator shall be of the shell-and-tube, flooded type designed for a minimum of 180 PSIG (1241 kPa) working pressure on the refrigerant side. Shell shall be fabricated from rolled carbon steel plates with fusion welded seams, carbon steel tube sheets, drilled and reamed to accommodate the tubes, and intermediate tube supports spaced no more than four feet apart. The refrigerant side of each shell is designed, tested and stamped in accordance with ASME Boiler and Pressure Vessel Code, Section VIII – Division I, or other pressure vessel code as appropriate.

Heat exchanger tubes shall be high-efficiency, externally and internally enhanced type. Tubes shall utilize the "skip-fin" design, providing a smooth internal and external surface at each intermediate tube support. This provides extra wall thickness and non-work hardened copper at the support location, extending the life of the heat exchangers. If skip-fin tubes are not used, minimum tube wall thickness shall be 0.035" (0.889 mm). Each tube shall be roller expanded into the tube sheets providing a leak-proof seal, and be individually replaceable. Water velocity through the tubes shall not exceed 12 ft./sec. (3.65 m/sec). A liquid level sight glass shall be provided on the side of the shell to aid in determining proper refrigerant charge and to check condition of the refrigerant charge. Aluminum mesh eliminators shall be located above the tube bundle to prevent liquid refrigerant carryover to the compressor. The evaporator shall have a refrigerant relief device sized to meet the requirements of the ASHRAE 15 Safety Code for Mechanical Refrigeration.

Water boxes shall be removable to permit tube cleaning and replacement. Stub-out water connections having Victaulic grooves shall be provided. Water boxes shall be designed for 150 PSIG (1034 kPa) design working pressure and be tested at 225 PSIG (1551 kPa). Vent and drain connections with plugs shall be provided on each water box. Low flow protection shall be provided by a thermal-type flow sensor, factory mounted in the water nozzle connection and wired to the chiller panel.

#### CONDENSER

Condenser shall be of the shell-and-tube type, designed for a minimum of 235 PSIG (1620 kPa) working pressure on the refrigerant side. Shell shall be fabricated from rolled carbon steel plates with fusion welded seams. Carbon steel tube sheets, drilled and reamed to accommodate the tubes, are welded to the end of each shell. Intermediate tube supports are drilled and reamed to eliminate sharp edges, fabricated from carbon steel plates. The refrigerant side of each shell is designed, tested and stamped in accordance with ASME Boiler and Pressure Vessel Code, Section VIII – Division I, or other pressure vessel code as appropriate.

Heat exchanger tubes shall be high efficiency, externally and internally enhanced type. Tubes shall utilize the "skip-fin" design, providing a smooth internal and external surface at each intermediate tube support. This provides extra wall thickness and non-work hardened copper at the support location, extending the life of the heat exchangers. If skip-fin tubes are not used, minimum tube wall thickness shall be 0.035" (0.889 mm). Each tube shall be roller expanded into the tube sheets providing a leak-proof seal, and be individually replaceable. Water velocity through the tubes shall not exceed 12 ft./sec. (3.65 m/sec.). A liquid level sight glass shall be provided on the side of the shell to aid in determining proper refrigerant charge and to check condition of the refrigerant relief devices; each sized to meet the requirements of the ASHRAE 15 Safety Code for Mechanical Refrigeration. Arrangement shall allow either valve to be isolated and replaced without removing the unit refrigerant charge.

The condenser shall be provided with positive shutoff valves in each compressor discharge line to the condenser.

Water boxes shall be removable to permit tube cleaning and replacement. Stub-out water connections having Victaulic grooves shall be provided. Water boxes shall be designed for 150 PSIG (1034 kPa) design working pressure and be tested at 225 PSIG (1551 kPa). Vent and drain connections with plugs shall be provided on each water box. A thermal-type water flow sensor shall provide low flow protection, factory mounted in the water nozzle connection and wired to the chiller control panel.

#### **REFRIGERANT FLOW CONTROL**

A high quality, tight closing "V" ball type variable orifice control valve shall control refrigerant flow to the evaporator. The variable orifice control shall automatically adjust to maintain proper refrigerant level in the condenser and evaporator. This shall be controlled by monitoring refrigerant liquid level in the condenser, assuring optimal subcooler performance.

#### **CONTROL CENTER**

**General** – The chiller shall be controlled by a single microprocessor based control center. The chiller control panel shall provide control of chiller operation and monitoring of chiller sensors, actuators, relays and switches. The chiller panel shall provide capacity control operation of the two series compressors in reponse to low entering condenser water and start-up requirements. The panel shall also allow the chiller to operate down to 0% load.

**Control Panel** – The control panel shall include a 10.4" color active matrix display with integral keypad for operator interface. The control panel shall be factory wired, unit mounted, Nema 12, gasketed enclosure. The panel

shall be fabricated of 10 gauge steel and include full height front access doors. The panel enclosure shall be painted to match the chiller color on the outside, and gloss white on interior surfaces. All controls are arranged for easy access and internally wired to clearly marked terminal strips or pre-wired PLC interface modules for external wiring connections. Wiring shall be color-coded black (control), white (neutral), and green (ground), with each wire numerically identified at both ends with heat shrinkable wire markers. Wiring enclosed in shielded cables and pre-wired cables shall be color coded per the wiring diagram.

The screen shall detail all operations and parameters, using a graphical representation of the chiller and its components. Graphic screens shall provide for:

- a. Chiller Overview
- b. Evaporator
- c. Condenser
- d. Low stage compressor
- e. High stage compressor
- f. Motors
- g. Capacity control diagram
- h. Manual/Auto stations for all control outputs

The operator interface shall be programmed to provide display of all major operating parameters in both graphical and list type screen displays. PID control loop set points, and Manual/Auto functions shall be accomplished by the operator interface. Alarm indicators on the graphic display screen shall provide annunciation, and an alarm history screen to which show the most recent alarms, with the time and date of occurrence. Trip status screens shall be provided which show the values of all analog inputs at the time of the last five chiller safety shutdowns. The time and date of the shutdown should also be shown. Separate pushbuttons shall be provided on the face of the control panel for Chiller Start, Stop, Reset and Emergency Stop.

#### CAPACITY CONTROLS SYSTEM

The Capacity Control philosophy of the chiller control system shall allow efficient fully automated control, without need for operator intervention. This control system shall monitor and display all safety aspects of the chiller and provides alarms and a shutdown if safety limits are exceeded. If operator intervention is required, manual controls shall be provided on the electronic operator interface, for all electric actuators.

The capacity controls algorithm shall automatically seeks out the most efficient operation of the CYK chiller. The pre-rotation vanes are automated to obey the tem-

# **Guide Specifications** (continued)

perature controller to maintain chilled water production. In cases of low load, the pre-rotation vanes shall automatically throttle and are limited to a minimum anti-surge position, which is calculated from a head curve. To provide light duty operation, the hot gas recycle valve shall be seamlessly throttled open according to temperature demands. This keeps the centrifugal compressor out of surge and maintains chilled water production.

In cases of high load, which exceeds the motor kilowatt (or current) usage, the capacity controls algorithm shall automatically unload the system to maintain a restriction on power consumption. In the same way, conditions of high discharge pressure or low suction pressure shall override the production of chilled water in the interests of keeping the chiller system online.

In cases of light load and low head, the high stage compressor shall be dropped offline, the inter-cooler (if provided) bypassed, and the unit will be run with the low stage compressor like a normal single compressor chiller.

### Analog Input List:

- 1. Low Stage Motor Current (% FLA)
- 2. High Stage Motor Current (% FLA)
- 3. Sub-cooler Refrigerant Liquid Level
- 4. Low Stage Oil Reservoir Oil Level
- 5. High Stage Oil Reservoir Oil Level
- 6. Evaporator Refrigerant Pressure
- 7. Condenser Refrigerant Pressure
- 8. Low Stage Compressor Low Oil Pressure
- 9. High Stage Compressor Low Oil Pressure
- 10. Low Stage Compressor High Oil Pressure
- 11. High Stage Compressor High Oil Pressure
- 12. Chilled Water-Out Temperature.
- 13. Chilled Water-In Temperature.
- 14. Condenser Water In Temperature
- 15. Condenser Water Out Temperature
- 16. Evaporator Refrigerant Liquid Temp.
- 17. Low Stage Compressor Refrigerant Discharge Temperature
- High Stage Compressor Refrigerant Discharge Temperature
- 19. Sub-cooled Refrigerant Liquid Temperature
- 20. Low Stage Compressor Oil Temperature
- 21. High Stage Compressor Oil Temperature
- 22. Low Stage PRV Position
- 23. High Stage PRV Position
- 24. Low Stage Compressor high stage thrust Bearing

Probe Gap

- 25. High Stage Compressor thrust bearing Probe gap
- 26. Inter-cooler Pressure (inter-cooler models)

### **Digital Inputs:**

- 1. Start-up Bypass Valve Open Limit Switch
- 2. Start-up Bypass Valve Closed Limit Switch
- 3. Chilled Water Low Flow Switch
- 4. Condenser Water Low Flow Switch
- 5. Low Stage Motor Starter Full Voltage (Run) Auxiliary Contact
- 6. High Stage Motor Starter Full Voltage (Run) Auxiliary Contact
- 7. Low Stage Motor Starter Safety Fault Lockout Relay
- 8. High Stage Motor Starter Safety Fault Lockout Relay
- 9. Condenser Refrigerant High Pressure Cutout
- 10. Low Stage Compressor Oil Heater Thermostat
- 11. HIGH STAGE Compressor Oil Heater Thermostat
- 12. LOW STAGE PRV Closed Limit Switch
- 13. HIGH STAGE PRV Closed Limit Switch
- 14. LOW STAGE Compressor V.S. Oil Pump Drive Faulted Contact
- 15. HIGH STAGE Compressor V.S. Oil Pump Drive Faulted Contact
- 16. Chiller Start
- 17. Chiller Stop
- 18. System Reset
- 19. Emergency Stop

### Analog Output List

- 1. Hot Gas Bypass Valve
- 2. Low Stage Compressor, V.S. Oil Pump Drive Control
- 3. High Stage Compressor, V.S. Oil Pump Drive Control
- 4. Variable Orifice Valve
- 5. Inter-stage Valve (inter-cooler models)

### **Digital Output List**

- 1. Low Stage Liquid Line Solenoid Valve
- 2. High Stage Liquid Line Solenoid Valve
- 3. High Stage Oil Return Solenoid
- 4. Low Stage Oil Return Solenoid Valve

- 5. Low Stage Compressor Oil Heater Contactor
- 6. High Stage Compressor Oil Heater Contactor
- LOW STAGE Compressor Motor Start/Stop Control Relay
- 8. HIGH STAGE Compressor Motor Start/Stop Control Relay
- 9. LOW STAGE Compressor Oil Pump Start/Stop Relay
- 10. HIGH STAGE Compressor Oil Pump Start/Stop Relay
- 11. Oil Level Control Pump Start/Stop Relay
- 12. Start-up Bypass Valve Open/Close Relay
- 13. Open Low Stage PRV
- 14. Open High Stage PRV
- 15. Close Low Stage PRV
- 16. Close High Stage PRV

#### Security

Security access to prevent unauthorized change of setpoints, to allow local or remote control of the chiller, and to allow manual operation of the pre-rotation vanes and oil pump shall be provided. Access shall be through ID and password recognition, which is defined by three different levels of user competence: operator, service and programming.

#### Memory Back-up

The operating program shall be stored in non-volatile memory (EPROM) to eliminate reprogramming the chiller due to AC power failure or battery discharge.

#### **Over-Current Protection**

A fused connection through a transformer on the Variable Speed Oil Pump Panel shall provide individual overcurrent protected power for all controls.

#### Communication

The chiller network interface shall be accomplished with the following native mediums with the listed protocol:

- a. Ethernet/IP over CAT-5 cable
- b. ControlNet over RG6 coaxial cable
- c. DH-485 over RS-485
- d. DF1 over RS-232c

The PLC tag database shall be provided to show all analog and discrete data that can be accessed.

Remote setting of the leaving chilled water set-point can be accomplished by a remote 4-20mA signal or by the network. Remote start and stop can be accomplished across the network protocol, or thru a hard-wired contact.

#### REMOTE ELECTRO-MECHANICAL COMPRESSOR MOTOR STARTER (OPTION)

A remote mounted electro-mechanical starter shall be furnished for each compressor motor. The starter shall be furnished in accordance with the chiller manufacturer's starter specifications R-1137, and as specified elsewhere in these specifications.

#### PORTABLE REFRIGERANT STORAGE / RECY-CLING SYSTEM (OPTION)

A portable, self-contained refrigerant storage/recycling system shall be provided consisting of a refrigerant compressor with oil separator, storage receiver, water-cooled condenser, filter drier and necessary valves and hoses to remove, replace and distill refrigerant. All necessary controls and safety devices shall be a permanent part of the system. Values provided in this manual are in the English inch-pound (I-P) system.

The following factors can be used to convert from English to the most common SI Metric values.

MEASUREMENT	MULTIPLY THIS ENGLISH VALUE	BY	TO OBTAIN THIS METRIC VALUE
CAPACITY TONS REFRIGERANT EFFECT (ton)		3.516	KILOWATTS (kW)
POWER	KILOWATTS (kW)	NO CHANGE	KILOWATTS (kW)
POWER	HORSEPOWER (hp)	0.7457	KILOWATTS (kW)
FLOW RATE GALLONS / MINUTE (gpm)		0.0631	LITERS / SECOND (L/s)
LENGTH	FEET (ft)	304.8	MILLIMETERS (mm)
LENGTH	INCHES (in)	25.4	MILLIMETERS (mm)
WEIGHT	POUNDS (lb)	0.4536	KILOGRAMS (kg)
VELOCITY	FEET / SECOND (fps)	0.3048	METERS / SECOND (m/s)
PRESSURE DROP	FEET OF WATER (ft)	2.989	KILOPASCALS (k Pa)
FRESSURE DRUP	POUNDS / SQ. INCH (psi)	6.895	KILOPASCALS (k Pa)

#### TEMPERATURE

To convert degrees Fahrenheit (°F) to degrees Celsius (°C), subtract 32° and multiply by 5/9 or 0.5556.

To convert a temperature range (i.e.,  $10^{\circ}$ F or  $12^{\circ}$ F chilled water range) from Fahrenheit to Celsius, multiply by 5/9 or 0.5556.

### EFFICIENCY

In the English I-P system, chiller efficiency is measured in kW / ton:

kW / ton	_	kW input
KVV / LOTT	=	tons refrigerant effect

In the SI Metric system, chiller efficiency is measured in Coefficient of Performance (COP).

COP	=	kW refrigeration effect
COP		kW input

kW / ton and COP are related as follows:

kW/ton	=	<u>3.516</u> COP
COP	=	<u>3.516</u> kW/ton



### FOULING FACTOR

ENGLISH I-P (fl² °F hr/Btu)	EQUIVALENT SI METRIC (m² k/kW)
0.0001	.018
0.00025	.044
0.0005	.088
0.00075	.132